METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES
A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in res...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BOHANNON, Zachary Scott LIM, Sungwon PUDUPAKAM, Raghavendra Sumanth Kumar |
description | A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4229214A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4229214A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4229214A13</originalsourceid><addsrcrecordid>eNqNyrEOgjAQANAuDgb9h_sBBiqLY0MPegNtc3eSOBFi6mSEBP8_Ln6A01ve0eCIGpIXcNGD3EVxFOgTQ2b01CnFASjWE00JGCWnKAiawPNtAA3ILhPKyRyey2sv55-VgR61C3XZ1rns2_Io7_KZMbfWXm3TuubyR_kCP8IrxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><source>esp@cenet</source><creator>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</creator><creatorcontrib>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><description>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</description><language>eng ; fre ; ger</language><subject>BEER ; BIOCHEMISTRY ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; ENZYMOLOGY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; TESTING ; VINEGAR ; WINE</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230823&DB=EPODOC&CC=EP&NR=4229214A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230823&DB=EPODOC&CC=EP&NR=4229214A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BOHANNON, Zachary Scott</creatorcontrib><creatorcontrib>LIM, Sungwon</creatorcontrib><creatorcontrib>PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><description>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>ENZYMOLOGY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>TESTING</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEOgjAQANAuDgb9h_sBBiqLY0MPegNtc3eSOBFi6mSEBP8_Ln6A01ve0eCIGpIXcNGD3EVxFOgTQ2b01CnFASjWE00JGCWnKAiawPNtAA3ILhPKyRyey2sv55-VgR61C3XZ1rns2_Io7_KZMbfWXm3TuubyR_kCP8IrxA</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>BOHANNON, Zachary Scott</creator><creator>LIM, Sungwon</creator><creator>PUDUPAKAM, Raghavendra Sumanth Kumar</creator><scope>EVB</scope></search><sort><creationdate>20230823</creationdate><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><author>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4229214A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>ENZYMOLOGY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>TESTING</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>BOHANNON, Zachary Scott</creatorcontrib><creatorcontrib>LIM, Sungwon</creatorcontrib><creatorcontrib>PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BOHANNON, Zachary Scott</au><au>LIM, Sungwon</au><au>PUDUPAKAM, Raghavendra Sumanth Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><date>2023-08-23</date><risdate>2023</risdate><abstract>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4229214A1 |
source | esp@cenet |
subjects | BEER BIOCHEMISTRY CHEMISTRY COMPOSITIONS OR TEST PAPERS THEREFOR CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ENZYMOLOGY INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS METALLURGY MICROBIOLOGY MUTATION OR GENETIC ENGINEERING PHYSICS PROCESSES OF PREPARING SUCH COMPOSITIONS SPIRITS TESTING VINEGAR WINE |
title | METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BOHANNON,%20Zachary%20Scott&rft.date=2023-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4229214A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |