METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES

A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BOHANNON, Zachary Scott, LIM, Sungwon, PUDUPAKAM, Raghavendra Sumanth Kumar
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BOHANNON, Zachary Scott
LIM, Sungwon
PUDUPAKAM, Raghavendra Sumanth Kumar
description A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4229214A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4229214A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4229214A13</originalsourceid><addsrcrecordid>eNqNyrEOgjAQANAuDgb9h_sBBiqLY0MPegNtc3eSOBFi6mSEBP8_Ln6A01ve0eCIGpIXcNGD3EVxFOgTQ2b01CnFASjWE00JGCWnKAiawPNtAA3ILhPKyRyey2sv55-VgR61C3XZ1rns2_Io7_KZMbfWXm3TuubyR_kCP8IrxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><source>esp@cenet</source><creator>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</creator><creatorcontrib>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><description>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</description><language>eng ; fre ; ger</language><subject>BEER ; BIOCHEMISTRY ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; ENZYMOLOGY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; TESTING ; VINEGAR ; WINE</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230823&amp;DB=EPODOC&amp;CC=EP&amp;NR=4229214A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230823&amp;DB=EPODOC&amp;CC=EP&amp;NR=4229214A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BOHANNON, Zachary Scott</creatorcontrib><creatorcontrib>LIM, Sungwon</creatorcontrib><creatorcontrib>PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><description>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>ENZYMOLOGY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>TESTING</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEOgjAQANAuDgb9h_sBBiqLY0MPegNtc3eSOBFi6mSEBP8_Ln6A01ve0eCIGpIXcNGD3EVxFOgTQ2b01CnFASjWE00JGCWnKAiawPNtAA3ILhPKyRyey2sv55-VgR61C3XZ1rns2_Io7_KZMbfWXm3TuubyR_kCP8IrxA</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>BOHANNON, Zachary Scott</creator><creator>LIM, Sungwon</creator><creator>PUDUPAKAM, Raghavendra Sumanth Kumar</creator><scope>EVB</scope></search><sort><creationdate>20230823</creationdate><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><author>BOHANNON, Zachary Scott ; LIM, Sungwon ; PUDUPAKAM, Raghavendra Sumanth Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4229214A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>ENZYMOLOGY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>TESTING</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>BOHANNON, Zachary Scott</creatorcontrib><creatorcontrib>LIM, Sungwon</creatorcontrib><creatorcontrib>PUDUPAKAM, Raghavendra Sumanth Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BOHANNON, Zachary Scott</au><au>LIM, Sungwon</au><au>PUDUPAKAM, Raghavendra Sumanth Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES</title><date>2023-08-23</date><risdate>2023</risdate><abstract>A method building models for predicting patient response to drug therapies uses patient data, including functional data, clinical data, and, in some implementations, genetic data (e.g., DNA extracted from diseased tissue). The functional data includes initial cell viability and cell viability in response to exposure to one or more drug therapies, and the clinical data includes patient information over time. For each patient, the method forms a feature vector comprising the functional data and the clinical data (and genetic data, when used). The method uses at least a subset of the feature vectors to train a first model to predict individual patient response to a first drug therapy. The method then stores the trained first model in a database for subsequent use in predicting patient response to the first drug therapy. Another method predicts patient responses to one or more drug therapies using the trained models.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4229214A1
source esp@cenet
subjects BEER
BIOCHEMISTRY
CHEMISTRY
COMPOSITIONS OR TEST PAPERS THEREFOR
CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES
ENZYMOLOGY
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS
METALLURGY
MICROBIOLOGY
MUTATION OR GENETIC ENGINEERING
PHYSICS
PROCESSES OF PREPARING SUCH COMPOSITIONS
SPIRITS
TESTING
VINEGAR
WINE
title METHODS AND SYSTEMS FOR PREDICTING IN-VIVO RESPONSE TO DRUG THERAPIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BOHANNON,%20Zachary%20Scott&rft.date=2023-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4229214A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true