MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE
A MEMS-mirror device (1) is provided that comprises a support (2), a mirror body (3) that is rotationally suspended with respect to the support along a rotation axis (4), and an actuator (7A,7B) to induce a rotation in the mirror body around the rotation axis. The mirror body (3) has a mirror surfac...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | van Lierop, Hendrikus Wilhelmus Leonardus A. M |
description | A MEMS-mirror device (1) is provided that comprises a support (2), a mirror body (3) that is rotationally suspended with respect to the support along a rotation axis (4), and an actuator (7A,7B) to induce a rotation in the mirror body around the rotation axis. The mirror body (3) has a mirror surface (311) that in a neutral state defines a reference plane (x, y) having a longitudinal axis (y) through a center of the mirror body parallel to the rotation axis (4) and a lateral axis (x) transverse to the longitudinal axis. The mirror body (3) has a central portion (31) and integral therewith a pair of extension portions (32A, 32B) that extend in mutually opposite directions along the longitudinal axis. Each of the extension portions (32A, 32B) is flexibly coupled at a lateral side (322A, 322B) to the support with a respective plurality (6A, 6B) of torsion beams (61) which in a neutral state of the mirror body extend in the reference plane (x, y). The torsion beams of a respective plurality of torsion beams have a respective first end (611) attached to the support and a respective second end (612) attached to the respective extension portion, wherein the respective first end and the respective second end have mutually different positions (y1, y2) in the direction of the longitudinal axis (y) and in the lateral direction (x) are at mutually opposite sides (x1, x2) of the rotation axis (4). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4209450A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4209450A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4209450A13</originalsourceid><addsrcrecordid>eNrjZHDzdfUN1vX1DAryD1JwcQ3zdHbVUfDxdHGE8RQc_VwUwlw9PJ19XBWc_X0DgjyDPf3cFRxRVPEwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMjA0sTUwNHQ2MilAAAEWYrQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE</title><source>esp@cenet</source><creator>van Lierop, Hendrikus Wilhelmus Leonardus A. M</creator><creatorcontrib>van Lierop, Hendrikus Wilhelmus Leonardus A. M</creatorcontrib><description>A MEMS-mirror device (1) is provided that comprises a support (2), a mirror body (3) that is rotationally suspended with respect to the support along a rotation axis (4), and an actuator (7A,7B) to induce a rotation in the mirror body around the rotation axis. The mirror body (3) has a mirror surface (311) that in a neutral state defines a reference plane (x, y) having a longitudinal axis (y) through a center of the mirror body parallel to the rotation axis (4) and a lateral axis (x) transverse to the longitudinal axis. The mirror body (3) has a central portion (31) and integral therewith a pair of extension portions (32A, 32B) that extend in mutually opposite directions along the longitudinal axis. Each of the extension portions (32A, 32B) is flexibly coupled at a lateral side (322A, 322B) to the support with a respective plurality (6A, 6B) of torsion beams (61) which in a neutral state of the mirror body extend in the reference plane (x, y). The torsion beams of a respective plurality of torsion beams have a respective first end (611) attached to the support and a respective second end (612) attached to the respective extension portion, wherein the respective first end and the respective second end have mutually different positions (y1, y2) in the direction of the longitudinal axis (y) and in the lateral direction (x) are at mutually opposite sides (x1, x2) of the rotation axis (4).</description><language>eng ; fre ; ger</language><subject>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES ; MICROSTRUCTURAL TECHNOLOGY ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PERFORMING OPERATIONS ; PHYSICS ; TRANSPORTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230712&DB=EPODOC&CC=EP&NR=4209450A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230712&DB=EPODOC&CC=EP&NR=4209450A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>van Lierop, Hendrikus Wilhelmus Leonardus A. M</creatorcontrib><title>MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE</title><description>A MEMS-mirror device (1) is provided that comprises a support (2), a mirror body (3) that is rotationally suspended with respect to the support along a rotation axis (4), and an actuator (7A,7B) to induce a rotation in the mirror body around the rotation axis. The mirror body (3) has a mirror surface (311) that in a neutral state defines a reference plane (x, y) having a longitudinal axis (y) through a center of the mirror body parallel to the rotation axis (4) and a lateral axis (x) transverse to the longitudinal axis. The mirror body (3) has a central portion (31) and integral therewith a pair of extension portions (32A, 32B) that extend in mutually opposite directions along the longitudinal axis. Each of the extension portions (32A, 32B) is flexibly coupled at a lateral side (322A, 322B) to the support with a respective plurality (6A, 6B) of torsion beams (61) which in a neutral state of the mirror body extend in the reference plane (x, y). The torsion beams of a respective plurality of torsion beams have a respective first end (611) attached to the support and a respective second end (612) attached to the respective extension portion, wherein the respective first end and the respective second end have mutually different positions (y1, y2) in the direction of the longitudinal axis (y) and in the lateral direction (x) are at mutually opposite sides (x1, x2) of the rotation axis (4).</description><subject>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES</subject><subject>MICROSTRUCTURAL TECHNOLOGY</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDzdfUN1vX1DAryD1JwcQ3zdHbVUfDxdHGE8RQc_VwUwlw9PJ19XBWc_X0DgjyDPf3cFRxRVPEwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMjA0sTUwNHQ2MilAAAEWYrQg</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>van Lierop, Hendrikus Wilhelmus Leonardus A. M</creator><scope>EVB</scope></search><sort><creationdate>20230712</creationdate><title>MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE</title><author>van Lierop, Hendrikus Wilhelmus Leonardus A. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4209450A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES</topic><topic>MICROSTRUCTURAL TECHNOLOGY</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>van Lierop, Hendrikus Wilhelmus Leonardus A. M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Lierop, Hendrikus Wilhelmus Leonardus A. M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE</title><date>2023-07-12</date><risdate>2023</risdate><abstract>A MEMS-mirror device (1) is provided that comprises a support (2), a mirror body (3) that is rotationally suspended with respect to the support along a rotation axis (4), and an actuator (7A,7B) to induce a rotation in the mirror body around the rotation axis. The mirror body (3) has a mirror surface (311) that in a neutral state defines a reference plane (x, y) having a longitudinal axis (y) through a center of the mirror body parallel to the rotation axis (4) and a lateral axis (x) transverse to the longitudinal axis. The mirror body (3) has a central portion (31) and integral therewith a pair of extension portions (32A, 32B) that extend in mutually opposite directions along the longitudinal axis. Each of the extension portions (32A, 32B) is flexibly coupled at a lateral side (322A, 322B) to the support with a respective plurality (6A, 6B) of torsion beams (61) which in a neutral state of the mirror body extend in the reference plane (x, y). The torsion beams of a respective plurality of torsion beams have a respective first end (611) attached to the support and a respective second end (612) attached to the respective extension portion, wherein the respective first end and the respective second end have mutually different positions (y1, y2) in the direction of the longitudinal axis (y) and in the lateral direction (x) are at mutually opposite sides (x1, x2) of the rotation axis (4).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4209450A1 |
source | esp@cenet |
subjects | MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICALDEVICES MICROSTRUCTURAL TECHNOLOGY OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PERFORMING OPERATIONS PHYSICS TRANSPORTING |
title | MEMS-MIRROR DEVICE, LIDAR DEVICE AND VEHICLE COMPRISING A LIDAR DEVICE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=van%20Lierop,%20Hendrikus%20Wilhelmus%20Leonardus%20A.%20M&rft.date=2023-07-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4209450A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |