OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for off-line learning using a reward prediction model. One of the methods includes obtaining robot experience data; training, on a first subset of the robot experience data, a reward prediction model that...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | REED, Scott Ellison ZOLNA, Konrad |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for off-line learning using a reward prediction model. One of the methods includes obtaining robot experience data; training, on a first subset of the robot experience data, a reward prediction model that receives a reward input comprising an input observation and generates as output a reward prediction that is a prediction Neural Network of a task-specific reward for the particular task that should be assigned to the input observation; processing experiences in the robot experience data using the trained reward prediction model to generate a respective reward prediction for each of the processed experiences; and training a policy neural network on (i) the processed experiences and (ii) the respective reward predictions for the processed experiences. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4162400A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4162400A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4162400A13</originalsourceid><addsrcrecordid>eNrjZHD2d3PT9fH0c1XwcXUM8vP0c1dw8w9SCPJ38g9RcPb3Cwny91EIDQaJOyoEuYY7BrkoBAS5ung6h3j6-yn4-ru4-vAwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABNDMyMTAwNHQ2MilAAAvMgq0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL</title><source>esp@cenet</source><creator>REED, Scott Ellison ; ZOLNA, Konrad</creator><creatorcontrib>REED, Scott Ellison ; ZOLNA, Konrad</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for off-line learning using a reward prediction model. One of the methods includes obtaining robot experience data; training, on a first subset of the robot experience data, a reward prediction model that receives a reward input comprising an input observation and generates as output a reward prediction that is a prediction Neural Network of a task-specific reward for the particular task that should be assigned to the input observation; processing experiences in the robot experience data using the trained reward prediction model to generate a respective reward prediction for each of the processed experiences; and training a policy neural network on (i) the processed experiences and (ii) the respective reward predictions for the processed experiences.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230412&DB=EPODOC&CC=EP&NR=4162400A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230412&DB=EPODOC&CC=EP&NR=4162400A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REED, Scott Ellison</creatorcontrib><creatorcontrib>ZOLNA, Konrad</creatorcontrib><title>OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for off-line learning using a reward prediction model. One of the methods includes obtaining robot experience data; training, on a first subset of the robot experience data, a reward prediction model that receives a reward input comprising an input observation and generates as output a reward prediction that is a prediction Neural Network of a task-specific reward for the particular task that should be assigned to the input observation; processing experiences in the robot experience data using the trained reward prediction model to generate a respective reward prediction for each of the processed experiences; and training a policy neural network on (i) the processed experiences and (ii) the respective reward predictions for the processed experiences.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2d3PT9fH0c1XwcXUM8vP0c1dw8w9SCPJ38g9RcPb3Cwny91EIDQaJOyoEuYY7BrkoBAS5ung6h3j6-yn4-ru4-vAwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABNDMyMTAwNHQ2MilAAAvMgq0A</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>REED, Scott Ellison</creator><creator>ZOLNA, Konrad</creator><scope>EVB</scope></search><sort><creationdate>20230412</creationdate><title>OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL</title><author>REED, Scott Ellison ; ZOLNA, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4162400A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>REED, Scott Ellison</creatorcontrib><creatorcontrib>ZOLNA, Konrad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REED, Scott Ellison</au><au>ZOLNA, Konrad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL</title><date>2023-04-12</date><risdate>2023</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for off-line learning using a reward prediction model. One of the methods includes obtaining robot experience data; training, on a first subset of the robot experience data, a reward prediction model that receives a reward input comprising an input observation and generates as output a reward prediction that is a prediction Neural Network of a task-specific reward for the particular task that should be assigned to the input observation; processing experiences in the robot experience data using the trained reward prediction model to generate a respective reward prediction for each of the processed experiences; and training a policy neural network on (i) the processed experiences and (ii) the respective reward predictions for the processed experiences.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4162400A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | OFF-LINE LEARNING FOR ROBOT CONTROL USING A REWARD PREDICTION MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REED,%20Scott%20Ellison&rft.date=2023-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4162400A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |