MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS

The present disclosure provides systems, methods, and computer program products for performing modeling of long-range interactions with reduced feature materialization, for example, in machine learning models. A computer-implemented method may include receiving a layer input comprising input data an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: BELLO, Irwan
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BELLO, Irwan
description The present disclosure provides systems, methods, and computer program products for performing modeling of long-range interactions with reduced feature materialization, for example, in machine learning models. A computer-implemented method may include receiving a layer input comprising input data and context data, generating one or more lambda functions based, at least in part, on a content function and a position function for each of a plurality of context elements in the context data, and applying one or more of the generated lambda functions to the input data in association with generating a layer output associated with a respective lambda layer. Experimental results for image classification on ResNet and for object detection with RetinaNet show that examples of the present disclosure significantly outperform convolutional and attentional counterparts while providing increased accuracy and efficiency.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4150529A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4150529A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4150529A13</originalsourceid><addsrcrecordid>eNqNy00KwjAQQOFuXIh6h7lAwapduByTSTqQH4mJgiClSFyJFur9saIHcPU235sWF-slGXYavALjnS4DOk3ALlJAEdm7A5w4NhBIJkESFGFMgcDiKBgNn_Gj4MgIBu1OIqjkvue8mNy6-5AXv86KcY-iKXP_bPPQd9f8yK-W9puqXtarLVbrP8gbjcEyTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS</title><source>esp@cenet</source><creator>BELLO, Irwan</creator><creatorcontrib>BELLO, Irwan</creatorcontrib><description>The present disclosure provides systems, methods, and computer program products for performing modeling of long-range interactions with reduced feature materialization, for example, in machine learning models. A computer-implemented method may include receiving a layer input comprising input data and context data, generating one or more lambda functions based, at least in part, on a content function and a position function for each of a plurality of context elements in the context data, and applying one or more of the generated lambda functions to the input data in association with generating a layer output associated with a respective lambda layer. Experimental results for image classification on ResNet and for object detection with RetinaNet show that examples of the present disclosure significantly outperform convolutional and attentional counterparts while providing increased accuracy and efficiency.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230322&amp;DB=EPODOC&amp;CC=EP&amp;NR=4150529A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230322&amp;DB=EPODOC&amp;CC=EP&amp;NR=4150529A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BELLO, Irwan</creatorcontrib><title>MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS</title><description>The present disclosure provides systems, methods, and computer program products for performing modeling of long-range interactions with reduced feature materialization, for example, in machine learning models. A computer-implemented method may include receiving a layer input comprising input data and context data, generating one or more lambda functions based, at least in part, on a content function and a position function for each of a plurality of context elements in the context data, and applying one or more of the generated lambda functions to the input data in association with generating a layer output associated with a respective lambda layer. Experimental results for image classification on ResNet and for object detection with RetinaNet show that examples of the present disclosure significantly outperform convolutional and attentional counterparts while providing increased accuracy and efficiency.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy00KwjAQQOFuXIh6h7lAwapduByTSTqQH4mJgiClSFyJFur9saIHcPU235sWF-slGXYavALjnS4DOk3ALlJAEdm7A5w4NhBIJkESFGFMgcDiKBgNn_Gj4MgIBu1OIqjkvue8mNy6-5AXv86KcY-iKXP_bPPQd9f8yK-W9puqXtarLVbrP8gbjcEyTA</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>BELLO, Irwan</creator><scope>EVB</scope></search><sort><creationdate>20230322</creationdate><title>MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS</title><author>BELLO, Irwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4150529A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BELLO, Irwan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BELLO, Irwan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS</title><date>2023-03-22</date><risdate>2023</risdate><abstract>The present disclosure provides systems, methods, and computer program products for performing modeling of long-range interactions with reduced feature materialization, for example, in machine learning models. A computer-implemented method may include receiving a layer input comprising input data and context data, generating one or more lambda functions based, at least in part, on a content function and a position function for each of a plurality of context elements in the context data, and applying one or more of the generated lambda functions to the input data in association with generating a layer output associated with a respective lambda layer. Experimental results for image classification on ResNet and for object detection with RetinaNet show that examples of the present disclosure significantly outperform convolutional and attentional counterparts while providing increased accuracy and efficiency.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4150529A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MODELING OF LONG-RANGE INTERACTIONS WITH REDUCED FEATURE MATERIALIZATION VIA LAMBDA FUNCTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BELLO,%20Irwan&rft.date=2023-03-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4150529A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true