TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION

A neural network system, comprising: instructions for implementing at least a SWBN layer in a neural network, and wherein the instructions perform operations comprising: during training of the neural network system on a plurality of batches of training data and for each of the plurality of batches:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FASHANDI, Homa, NEZHADARYA, Ehsan, ZHANG, Shengdong, LIU, Jiayi
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FASHANDI, Homa
NEZHADARYA, Ehsan
ZHANG, Shengdong
LIU, Jiayi
description A neural network system, comprising: instructions for implementing at least a SWBN layer in a neural network, and wherein the instructions perform operations comprising: during training of the neural network system on a plurality of batches of training data and for each of the plurality of batches: obtaining a respective first layer output for each of the plurality of training data; determining a plurality of normalization statistics for the batch from the first layer outputs; generating a respective normalized output for each training data in the batch; updating the whitening matrix by a covariance matrix; performing stochastic whitening on the normalized components of each first layer output; transforming the whitened data for each training data; generating a respective SWBN layer output for each of the training data from the transformed whitened data for each training data in the batch; and providing the SWBN layer output.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4128061A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4128061A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4128061A43</originalsourceid><addsrcrecordid>eNrjZPAICXL09PP0c1dwVPBzDQ1y9AFSIeH-Qd4KocEg4eAQf2cPx-AQT2eFcA_PEFewWifHEGcPBT__IF9HH88oxxBPfz8eBta0xJziVF4ozc2g4OYKVKWbWpAfn1pckJicmpdaEu8aYGJoZGFgZuhoYkyEEgDUOyzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION</title><source>esp@cenet</source><creator>FASHANDI, Homa ; NEZHADARYA, Ehsan ; ZHANG, Shengdong ; LIU, Jiayi</creator><creatorcontrib>FASHANDI, Homa ; NEZHADARYA, Ehsan ; ZHANG, Shengdong ; LIU, Jiayi</creatorcontrib><description>A neural network system, comprising: instructions for implementing at least a SWBN layer in a neural network, and wherein the instructions perform operations comprising: during training of the neural network system on a plurality of batches of training data and for each of the plurality of batches: obtaining a respective first layer output for each of the plurality of training data; determining a plurality of normalization statistics for the batch from the first layer outputs; generating a respective normalized output for each training data in the batch; updating the whitening matrix by a covariance matrix; performing stochastic whitening on the normalized components of each first layer output; transforming the whitened data for each training data; generating a respective SWBN layer output for each of the training data from the transformed whitened data for each training data in the batch; and providing the SWBN layer output.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240424&amp;DB=EPODOC&amp;CC=EP&amp;NR=4128061A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240424&amp;DB=EPODOC&amp;CC=EP&amp;NR=4128061A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FASHANDI, Homa</creatorcontrib><creatorcontrib>NEZHADARYA, Ehsan</creatorcontrib><creatorcontrib>ZHANG, Shengdong</creatorcontrib><creatorcontrib>LIU, Jiayi</creatorcontrib><title>TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION</title><description>A neural network system, comprising: instructions for implementing at least a SWBN layer in a neural network, and wherein the instructions perform operations comprising: during training of the neural network system on a plurality of batches of training data and for each of the plurality of batches: obtaining a respective first layer output for each of the plurality of training data; determining a plurality of normalization statistics for the batch from the first layer outputs; generating a respective normalized output for each training data in the batch; updating the whitening matrix by a covariance matrix; performing stochastic whitening on the normalized components of each first layer output; transforming the whitened data for each training data; generating a respective SWBN layer output for each of the training data from the transformed whitened data for each training data in the batch; and providing the SWBN layer output.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAICXL09PP0c1dwVPBzDQ1y9AFSIeH-Qd4KocEg4eAQf2cPx-AQT2eFcA_PEFewWifHEGcPBT__IF9HH88oxxBPfz8eBta0xJziVF4ozc2g4OYKVKWbWpAfn1pckJicmpdaEu8aYGJoZGFgZuhoYkyEEgDUOyzI</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>FASHANDI, Homa</creator><creator>NEZHADARYA, Ehsan</creator><creator>ZHANG, Shengdong</creator><creator>LIU, Jiayi</creator><scope>EVB</scope></search><sort><creationdate>20240424</creationdate><title>TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION</title><author>FASHANDI, Homa ; NEZHADARYA, Ehsan ; ZHANG, Shengdong ; LIU, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4128061A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FASHANDI, Homa</creatorcontrib><creatorcontrib>NEZHADARYA, Ehsan</creatorcontrib><creatorcontrib>ZHANG, Shengdong</creatorcontrib><creatorcontrib>LIU, Jiayi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FASHANDI, Homa</au><au>NEZHADARYA, Ehsan</au><au>ZHANG, Shengdong</au><au>LIU, Jiayi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION</title><date>2024-04-24</date><risdate>2024</risdate><abstract>A neural network system, comprising: instructions for implementing at least a SWBN layer in a neural network, and wherein the instructions perform operations comprising: during training of the neural network system on a plurality of batches of training data and for each of the plurality of batches: obtaining a respective first layer output for each of the plurality of training data; determining a plurality of normalization statistics for the batch from the first layer outputs; generating a respective normalized output for each training data in the batch; updating the whitening matrix by a covariance matrix; performing stochastic whitening on the normalized components of each first layer output; transforming the whitened data for each training data; generating a respective SWBN layer output for each of the training data from the transformed whitened data for each training data in the batch; and providing the SWBN layer output.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4128061A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title TRAINING A NEURAL NETWORK USING STOCHASTIC WHITENING BATCH NORMALIZATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FASHANDI,%20Homa&rft.date=2024-04-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4128061A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true