METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING

Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KUUSELA, Esa Heikki, BASIRI, Shahab, HALKO, Lauri Jaakonpoika, CZEIZLER, Elena, HAKALA, Mikko Oskari
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KUUSELA, Esa Heikki
BASIRI, Shahab
HALKO, Lauri Jaakonpoika
CZEIZLER, Elena
HAKALA, Mikko Oskari
description Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4126212A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4126212A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4126212A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gMeGsX7kmxtId2E7VboqRSJJ9FC_T9W8QGeBmZmbbqGtIq-BWQPmBIKatdCGQVcZJUYQs1nUCHUhljBU6gvJD107ScI1bzMjr4xEAovemtWt_E-592PGwMlqav2eXoOeZ7Ga37k10DpWNiTLSwWhz-WNzspMHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</creator><creatorcontrib>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</creatorcontrib><description>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</description><language>eng ; fre ; ger</language><subject>ELECTROTHERAPY ; HUMAN NECESSITIES ; HYGIENE ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; RADIATION THERAPY ; ULTRASOUND THERAPY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230208&amp;DB=EPODOC&amp;CC=EP&amp;NR=4126212A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230208&amp;DB=EPODOC&amp;CC=EP&amp;NR=4126212A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUUSELA, Esa Heikki</creatorcontrib><creatorcontrib>BASIRI, Shahab</creatorcontrib><creatorcontrib>HALKO, Lauri Jaakonpoika</creatorcontrib><creatorcontrib>CZEIZLER, Elena</creatorcontrib><creatorcontrib>HAKALA, Mikko Oskari</creatorcontrib><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><description>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</description><subject>ELECTROTHERAPY</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>RADIATION THERAPY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gMeGsX7kmxtId2E7VboqRSJJ9FC_T9W8QGeBmZmbbqGtIq-BWQPmBIKatdCGQVcZJUYQs1nUCHUhljBU6gvJD107ScI1bzMjr4xEAovemtWt_E-592PGwMlqav2eXoOeZ7Ga37k10DpWNiTLSwWhz-WNzspMHE</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>KUUSELA, Esa Heikki</creator><creator>BASIRI, Shahab</creator><creator>HALKO, Lauri Jaakonpoika</creator><creator>CZEIZLER, Elena</creator><creator>HAKALA, Mikko Oskari</creator><scope>EVB</scope></search><sort><creationdate>20230208</creationdate><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><author>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4126212A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>ELECTROTHERAPY</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>RADIATION THERAPY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>KUUSELA, Esa Heikki</creatorcontrib><creatorcontrib>BASIRI, Shahab</creatorcontrib><creatorcontrib>HALKO, Lauri Jaakonpoika</creatorcontrib><creatorcontrib>CZEIZLER, Elena</creatorcontrib><creatorcontrib>HAKALA, Mikko Oskari</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUUSELA, Esa Heikki</au><au>BASIRI, Shahab</au><au>HALKO, Lauri Jaakonpoika</au><au>CZEIZLER, Elena</au><au>HAKALA, Mikko Oskari</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><date>2023-02-08</date><risdate>2023</risdate><abstract>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4126212A1
source esp@cenet
subjects ELECTROTHERAPY
HUMAN NECESSITIES
HYGIENE
MAGNETOTHERAPY
MEDICAL OR VETERINARY SCIENCE
RADIATION THERAPY
ULTRASOUND THERAPY
title METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUUSELA,%20Esa%20Heikki&rft.date=2023-02-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4126212A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true