METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING
Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforceme...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KUUSELA, Esa Heikki BASIRI, Shahab HALKO, Lauri Jaakonpoika CZEIZLER, Elena HAKALA, Mikko Oskari |
description | Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4126212A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4126212A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4126212A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gMeGsX7kmxtId2E7VboqRSJJ9FC_T9W8QGeBmZmbbqGtIq-BWQPmBIKatdCGQVcZJUYQs1nUCHUhljBU6gvJD107ScI1bzMjr4xEAovemtWt_E-592PGwMlqav2eXoOeZ7Ga37k10DpWNiTLSwWhz-WNzspMHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><source>esp@cenet</source><creator>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</creator><creatorcontrib>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</creatorcontrib><description>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</description><language>eng ; fre ; ger</language><subject>ELECTROTHERAPY ; HUMAN NECESSITIES ; HYGIENE ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; RADIATION THERAPY ; ULTRASOUND THERAPY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230208&DB=EPODOC&CC=EP&NR=4126212A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230208&DB=EPODOC&CC=EP&NR=4126212A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUUSELA, Esa Heikki</creatorcontrib><creatorcontrib>BASIRI, Shahab</creatorcontrib><creatorcontrib>HALKO, Lauri Jaakonpoika</creatorcontrib><creatorcontrib>CZEIZLER, Elena</creatorcontrib><creatorcontrib>HAKALA, Mikko Oskari</creatorcontrib><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><description>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</description><subject>ELECTROTHERAPY</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>RADIATION THERAPY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gMeGsX7kmxtId2E7VboqRSJJ9FC_T9W8QGeBmZmbbqGtIq-BWQPmBIKatdCGQVcZJUYQs1nUCHUhljBU6gvJD107ScI1bzMjr4xEAovemtWt_E-592PGwMlqav2eXoOeZ7Ga37k10DpWNiTLSwWhz-WNzspMHE</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>KUUSELA, Esa Heikki</creator><creator>BASIRI, Shahab</creator><creator>HALKO, Lauri Jaakonpoika</creator><creator>CZEIZLER, Elena</creator><creator>HAKALA, Mikko Oskari</creator><scope>EVB</scope></search><sort><creationdate>20230208</creationdate><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><author>KUUSELA, Esa Heikki ; BASIRI, Shahab ; HALKO, Lauri Jaakonpoika ; CZEIZLER, Elena ; HAKALA, Mikko Oskari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4126212A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>ELECTROTHERAPY</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>RADIATION THERAPY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>KUUSELA, Esa Heikki</creatorcontrib><creatorcontrib>BASIRI, Shahab</creatorcontrib><creatorcontrib>HALKO, Lauri Jaakonpoika</creatorcontrib><creatorcontrib>CZEIZLER, Elena</creatorcontrib><creatorcontrib>HAKALA, Mikko Oskari</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUUSELA, Esa Heikki</au><au>BASIRI, Shahab</au><au>HALKO, Lauri Jaakonpoika</au><au>CZEIZLER, Elena</au><au>HAKALA, Mikko Oskari</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING</title><date>2023-02-08</date><risdate>2023</risdate><abstract>Methods and systems are provided which relate to the planning and delivery of radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. An artificial intelligence (AI) agent trained using reinforcement learning (and/or some other suitable form of machine learning) is used to control the radiation delivery parameters in effort to achieve desired delivery of radiation therapy. In some embodiments, the AI agent selects suitable control steps (e.g. radiation delivery parameters for particular time steps), while accounting for patient motions, difference(s) in patient anatomical geometry and/or the like.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4126212A1 |
source | esp@cenet |
subjects | ELECTROTHERAPY HUMAN NECESSITIES HYGIENE MAGNETOTHERAPY MEDICAL OR VETERINARY SCIENCE RADIATION THERAPY ULTRASOUND THERAPY |
title | METHODS AND APPARATUS FOR CONTROLLING TREATMENT DELIVERY USING REINFORCEMENT LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUUSELA,%20Esa%20Heikki&rft.date=2023-02-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4126212A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |