AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES

A method of training a neural network to detect anomalies in images comprises, in each epoch, deriving a first input to the neural network by synthesizing an anomalous image from a raw image and inputting the synthesized image to a filter module comprising a filter adapted to increase visibility of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HIDA, Yusuke, MAKARIOU, Savvas
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HIDA, Yusuke
MAKARIOU, Savvas
description A method of training a neural network to detect anomalies in images comprises, in each epoch, deriving a first input to the neural network by synthesizing an anomalous image from a raw image and inputting the synthesized image to a filter module comprising a filter adapted to increase visibility of anomalies, the filter module applying successive filtering steps, comprising filtering with a first, and then a second, set of filter parameters or using a first type, and then a second type, of filter, and deriving a second input to the neural network by feeding the raw image through the filter module, and feeding the output of the filter module to a loss calculator together with an image output by the neural network, the output image representing a reconstructed image including the predicted location of each anomaly in the synthesized image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4105879A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4105879A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4105879A13</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYQ4QwaCilkP2N7uQzIbdiYVNCLJWooF4fwTxAFav-N48u7JQJ7FrES4uwlANDuKkogZqvSH1ZKAolTSwxJYDRHPygSyHL0cgJxbfcO0QyQm5hivEZTa7D48prX5dZHSGlnadxlefpnG4pWd692h3xWZ_PJy42P6xfADOzzEG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES</title><source>esp@cenet</source><creator>HIDA, Yusuke ; MAKARIOU, Savvas</creator><creatorcontrib>HIDA, Yusuke ; MAKARIOU, Savvas</creatorcontrib><description>A method of training a neural network to detect anomalies in images comprises, in each epoch, deriving a first input to the neural network by synthesizing an anomalous image from a raw image and inputting the synthesized image to a filter module comprising a filter adapted to increase visibility of anomalies, the filter module applying successive filtering steps, comprising filtering with a first, and then a second, set of filter parameters or using a first type, and then a second type, of filter, and deriving a second input to the neural network by feeding the raw image through the filter module, and feeding the output of the filter module to a loss calculator together with an image output by the neural network, the output image representing a reconstructed image including the predicted location of each anomaly in the synthesized image.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221221&amp;DB=EPODOC&amp;CC=EP&amp;NR=4105879A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221221&amp;DB=EPODOC&amp;CC=EP&amp;NR=4105879A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HIDA, Yusuke</creatorcontrib><creatorcontrib>MAKARIOU, Savvas</creatorcontrib><title>AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES</title><description>A method of training a neural network to detect anomalies in images comprises, in each epoch, deriving a first input to the neural network by synthesizing an anomalous image from a raw image and inputting the synthesized image to a filter module comprising a filter adapted to increase visibility of anomalies, the filter module applying successive filtering steps, comprising filtering with a first, and then a second, set of filter parameters or using a first type, and then a second type, of filter, and deriving a second input to the neural network by feeding the raw image through the filter module, and feeding the output of the filter module to a loss calculator together with an image output by the neural network, the output image representing a reconstructed image including the predicted location of each anomaly in the synthesized image.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYQ4QwaCilkP2N7uQzIbdiYVNCLJWooF4fwTxAFav-N48u7JQJ7FrES4uwlANDuKkogZqvSH1ZKAolTSwxJYDRHPygSyHL0cgJxbfcO0QyQm5hivEZTa7D48prX5dZHSGlnadxlefpnG4pWd692h3xWZ_PJy42P6xfADOzzEG</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>HIDA, Yusuke</creator><creator>MAKARIOU, Savvas</creator><scope>EVB</scope></search><sort><creationdate>20221221</creationdate><title>AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES</title><author>HIDA, Yusuke ; MAKARIOU, Savvas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4105879A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HIDA, Yusuke</creatorcontrib><creatorcontrib>MAKARIOU, Savvas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HIDA, Yusuke</au><au>MAKARIOU, Savvas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES</title><date>2022-12-21</date><risdate>2022</risdate><abstract>A method of training a neural network to detect anomalies in images comprises, in each epoch, deriving a first input to the neural network by synthesizing an anomalous image from a raw image and inputting the synthesized image to a filter module comprising a filter adapted to increase visibility of anomalies, the filter module applying successive filtering steps, comprising filtering with a first, and then a second, set of filter parameters or using a first type, and then a second type, of filter, and deriving a second input to the neural network by feeding the raw image through the filter module, and feeding the output of the filter module to a loss calculator together with an image output by the neural network, the output image representing a reconstructed image including the predicted location of each anomaly in the synthesized image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4105879A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title AN UNSUPERVISED LEARNING METHOD TO DETECT TRANSPARENT, OR HARD TO SEE, ANOMALIES IN IMAGES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HIDA,%20Yusuke&rft.date=2022-12-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4105879A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true