RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING
The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WEI, Wei WANG, Zhoufan ZHANG, Bo LIU, Ling LIU, Jun |
description | The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4099237A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4099237A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4099237A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gOCWkF6XJttG0g3yyYinkqReBIt1P-jgg_wNDAzc3NRdB6SIkeXQDBG4oYUah_OYKlDtiBK1lXJBYaOUhssfC2KoGI6RThiJAufaokEPKGy42ZpZrfhPuXVjwsDNaWqXefx2edpHK75kV89yX5TlrvigNvij-UNp-Aw4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><source>esp@cenet</source><creator>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</creator><creatorcontrib>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</creatorcontrib><description>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221207&DB=EPODOC&CC=EP&NR=4099237A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221207&DB=EPODOC&CC=EP&NR=4099237A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEI, Wei</creatorcontrib><creatorcontrib>WANG, Zhoufan</creatorcontrib><creatorcontrib>ZHANG, Bo</creatorcontrib><creatorcontrib>LIU, Ling</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><description>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gOCWkF6XJttG0g3yyYinkqReBIt1P-jgg_wNDAzc3NRdB6SIkeXQDBG4oYUah_OYKlDtiBK1lXJBYaOUhssfC2KoGI6RThiJAufaokEPKGy42ZpZrfhPuXVjwsDNaWqXefx2edpHK75kV89yX5TlrvigNvij-UNp-Aw4g</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>WEI, Wei</creator><creator>WANG, Zhoufan</creator><creator>ZHANG, Bo</creator><creator>LIU, Ling</creator><creator>LIU, Jun</creator><scope>EVB</scope></search><sort><creationdate>20221207</creationdate><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><author>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4099237A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WEI, Wei</creatorcontrib><creatorcontrib>WANG, Zhoufan</creatorcontrib><creatorcontrib>ZHANG, Bo</creatorcontrib><creatorcontrib>LIU, Ling</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEI, Wei</au><au>WANG, Zhoufan</au><au>ZHANG, Bo</au><au>LIU, Ling</au><au>LIU, Jun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><date>2022-12-07</date><risdate>2022</risdate><abstract>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4099237A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEI,%20Wei&rft.date=2022-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4099237A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |