RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING

The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEI, Wei, WANG, Zhoufan, ZHANG, Bo, LIU, Ling, LIU, Jun
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEI, Wei
WANG, Zhoufan
ZHANG, Bo
LIU, Ling
LIU, Jun
description The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4099237A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4099237A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4099237A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gOCWkF6XJttG0g3yyYinkqReBIt1P-jgg_wNDAzc3NRdB6SIkeXQDBG4oYUah_OYKlDtiBK1lXJBYaOUhssfC2KoGI6RThiJAufaokEPKGy42ZpZrfhPuXVjwsDNaWqXefx2edpHK75kV89yX5TlrvigNvij-UNp-Aw4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><source>esp@cenet</source><creator>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</creator><creatorcontrib>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</creatorcontrib><description>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221207&amp;DB=EPODOC&amp;CC=EP&amp;NR=4099237A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221207&amp;DB=EPODOC&amp;CC=EP&amp;NR=4099237A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEI, Wei</creatorcontrib><creatorcontrib>WANG, Zhoufan</creatorcontrib><creatorcontrib>ZHANG, Bo</creatorcontrib><creatorcontrib>LIU, Ling</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><description>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gOCWkF6XJttG0g3yyYinkqReBIt1P-jgg_wNDAzc3NRdB6SIkeXQDBG4oYUah_OYKlDtiBK1lXJBYaOUhssfC2KoGI6RThiJAufaokEPKGy42ZpZrfhPuXVjwsDNaWqXefx2edpHK75kV89yX5TlrvigNvij-UNp-Aw4g</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>WEI, Wei</creator><creator>WANG, Zhoufan</creator><creator>ZHANG, Bo</creator><creator>LIU, Ling</creator><creator>LIU, Jun</creator><scope>EVB</scope></search><sort><creationdate>20221207</creationdate><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><author>WEI, Wei ; WANG, Zhoufan ; ZHANG, Bo ; LIU, Ling ; LIU, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4099237A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WEI, Wei</creatorcontrib><creatorcontrib>WANG, Zhoufan</creatorcontrib><creatorcontrib>ZHANG, Bo</creatorcontrib><creatorcontrib>LIU, Ling</creatorcontrib><creatorcontrib>LIU, Jun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEI, Wei</au><au>WANG, Zhoufan</au><au>ZHANG, Bo</au><au>LIU, Ling</au><au>LIU, Jun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING</title><date>2022-12-07</date><risdate>2022</risdate><abstract>The present disclosure provides are a rail transit passenger flow demand prediction method and apparatus based on deep learning. The prediction method comprises the following steps: acquiring OD data, converting the data into periodic OD two-dimensional graph sequence data; inputting the periodic OD two-dimensional graph sequence data into a spatial complex-associated convolutional residual network model, and outputting spatial feature data; inputting the spatial feature data into a time feature information extraction model, and outputting time feature data; performing feature extraction by using time feature data to obtain an OD passenger flow value at a prediction moment; and assessing the prediction method as required. In accordance with the method, a predicted OD passenger flow value at a prediction moment is obtained by analyzing the multi-period association of the OD data and extracting the feature data, and thus the prediction accuracy is high.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4099237A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title RAIL TRANSIT PASSENGER FLOW DEMAND PREDICTION METHOD AND APPARATUS BASED ON DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEI,%20Wei&rft.date=2022-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4099237A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true