METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION
The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input siz...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CALIDAS, Balaji BALCI, Murat GANGANI, Hitendra Mohan |
description | The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4097590A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4097590A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4097590A13</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEsDlJ9h3uBQkVFOl6Ta3OQJqG5zqVInIoW6vujgw_g9C_fv1exJ7HBJEBvAGPEAWVMIAFa1OxYUAiEHZUNJjLQxRF61JY9gSMcPPsOUGty9D05-IPaPeZly8dfCwUtibZlXl9T3tb5np_5PVG8VPXtWld4Ov9BPvNlLmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><source>esp@cenet</source><creator>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</creator><creatorcontrib>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</creatorcontrib><description>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221207&DB=EPODOC&CC=EP&NR=4097590A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221207&DB=EPODOC&CC=EP&NR=4097590A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CALIDAS, Balaji</creatorcontrib><creatorcontrib>BALCI, Murat</creatorcontrib><creatorcontrib>GANGANI, Hitendra Mohan</creatorcontrib><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><description>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEsDlJ9h3uBQkVFOl6Ta3OQJqG5zqVInIoW6vujgw_g9C_fv1exJ7HBJEBvAGPEAWVMIAFa1OxYUAiEHZUNJjLQxRF61JY9gSMcPPsOUGty9D05-IPaPeZly8dfCwUtibZlXl9T3tb5np_5PVG8VPXtWld4Ov9BPvNlLmk</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>CALIDAS, Balaji</creator><creator>BALCI, Murat</creator><creator>GANGANI, Hitendra Mohan</creator><scope>EVB</scope></search><sort><creationdate>20221207</creationdate><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><author>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4097590A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CALIDAS, Balaji</creatorcontrib><creatorcontrib>BALCI, Murat</creatorcontrib><creatorcontrib>GANGANI, Hitendra Mohan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CALIDAS, Balaji</au><au>BALCI, Murat</au><au>GANGANI, Hitendra Mohan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><date>2022-12-07</date><risdate>2022</risdate><abstract>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4097590A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CALIDAS,%20Balaji&rft.date=2022-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4097590A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |