METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION

The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CALIDAS, Balaji, BALCI, Murat, GANGANI, Hitendra Mohan
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CALIDAS, Balaji
BALCI, Murat
GANGANI, Hitendra Mohan
description The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4097590A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4097590A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4097590A13</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEsDlJ9h3uBQkVFOl6Ta3OQJqG5zqVInIoW6vujgw_g9C_fv1exJ7HBJEBvAGPEAWVMIAFa1OxYUAiEHZUNJjLQxRF61JY9gSMcPPsOUGty9D05-IPaPeZly8dfCwUtibZlXl9T3tb5np_5PVG8VPXtWld4Ov9BPvNlLmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><source>esp@cenet</source><creator>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</creator><creatorcontrib>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</creatorcontrib><description>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221207&amp;DB=EPODOC&amp;CC=EP&amp;NR=4097590A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221207&amp;DB=EPODOC&amp;CC=EP&amp;NR=4097590A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CALIDAS, Balaji</creatorcontrib><creatorcontrib>BALCI, Murat</creatorcontrib><creatorcontrib>GANGANI, Hitendra Mohan</creatorcontrib><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><description>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEsDlJ9h3uBQkVFOl6Ta3OQJqG5zqVInIoW6vujgw_g9C_fv1exJ7HBJEBvAGPEAWVMIAFa1OxYUAiEHZUNJjLQxRF61JY9gSMcPPsOUGty9D05-IPaPeZly8dfCwUtibZlXl9T3tb5np_5PVG8VPXtWld4Ov9BPvNlLmk</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>CALIDAS, Balaji</creator><creator>BALCI, Murat</creator><creator>GANGANI, Hitendra Mohan</creator><scope>EVB</scope></search><sort><creationdate>20221207</creationdate><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><author>CALIDAS, Balaji ; BALCI, Murat ; GANGANI, Hitendra Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4097590A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CALIDAS, Balaji</creatorcontrib><creatorcontrib>BALCI, Murat</creatorcontrib><creatorcontrib>GANGANI, Hitendra Mohan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CALIDAS, Balaji</au><au>BALCI, Murat</au><au>GANGANI, Hitendra Mohan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION</title><date>2022-12-07</date><risdate>2022</risdate><abstract>The present disclosure relates to methods and apparatus for machine learning processing. For example, disclosed techniques facilitate tile-based GPU machine learning acceleration. Aspects of the present disclosure can determine a tile size based on a memory size of a first memory and a job input size associated with executing a computational job. In some examples, the computational job may be one of a quantity of computational jobs configured to execute a machine learning primitive. Aspects of the present disclosure can also load, based on the tile size, input data associated with a batch of computational jobs from a second memory to the first memory. Further, aspects of the present disclosure can generate batch output data by executing the batch of computational jobs using the input data loaded to the first memory. Additionally, aspects of the present disclosure can store the generated batch output data to the second memory.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4097590A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title METHODS AND APPARATUS TO FACILITATE TILE-BASED GPU MACHINE LEARNING ACCELERATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CALIDAS,%20Balaji&rft.date=2022-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4097590A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true