EXPLAINABLE PROCESS PREDICTION

A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SCHEEPENS, Roeland, Johannus, VERHOEF, Celine
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SCHEEPENS, Roeland, Johannus
VERHOEF, Celine
description A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4085396A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4085396A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4085396A13</originalsourceid><addsrcrecordid>eNrjZJBzjQjwcfT0c3TycVUICPJ3dg0OBtKuLp7OIZ7-fjwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JN41wMTAwtTY0szR0JgIJQCDZCEo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXPLAINABLE PROCESS PREDICTION</title><source>esp@cenet</source><creator>SCHEEPENS, Roeland, Johannus ; VERHOEF, Celine</creator><creatorcontrib>SCHEEPENS, Roeland, Johannus ; VERHOEF, Celine</creatorcontrib><description>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221109&amp;DB=EPODOC&amp;CC=EP&amp;NR=4085396A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221109&amp;DB=EPODOC&amp;CC=EP&amp;NR=4085396A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SCHEEPENS, Roeland, Johannus</creatorcontrib><creatorcontrib>VERHOEF, Celine</creatorcontrib><title>EXPLAINABLE PROCESS PREDICTION</title><description>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBzjQjwcfT0c3TycVUICPJ3dg0OBtKuLp7OIZ7-fjwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JN41wMTAwtTY0szR0JgIJQCDZCEo</recordid><startdate>20221109</startdate><enddate>20221109</enddate><creator>SCHEEPENS, Roeland, Johannus</creator><creator>VERHOEF, Celine</creator><scope>EVB</scope></search><sort><creationdate>20221109</creationdate><title>EXPLAINABLE PROCESS PREDICTION</title><author>SCHEEPENS, Roeland, Johannus ; VERHOEF, Celine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4085396A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SCHEEPENS, Roeland, Johannus</creatorcontrib><creatorcontrib>VERHOEF, Celine</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SCHEEPENS, Roeland, Johannus</au><au>VERHOEF, Celine</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXPLAINABLE PROCESS PREDICTION</title><date>2022-11-09</date><risdate>2022</risdate><abstract>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4085396A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title EXPLAINABLE PROCESS PREDICTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SCHEEPENS,%20Roeland,%20Johannus&rft.date=2022-11-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4085396A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true