ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME

An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HOKARI Ryohei, FUKUI Hiroaki, KURIHARA Kazuma
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HOKARI Ryohei
FUKUI Hiroaki
KURIHARA Kazuma
description An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4080253A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4080253A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4080253A43</originalsourceid><addsrcrecordid>eNrjZLBy9AvxDHJ183F1DvH091MIDgkKdQ4JDXJVcPRzUfB1DfHwd1Fw8w9S8HX0C3VzBEl5-rkrBDv6uvIwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMDCwMjU2NHE2MilAAAhhMo2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><source>esp@cenet</source><creator>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</creator><creatorcontrib>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</creatorcontrib><description>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</description><language>eng ; fre ; ger</language><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; GLASS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; JOINING GLASS TO GLASS OR OTHER MATERIALS ; LAYERED PRODUCTS ; LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM ; METALLURGY ; MINERAL OR SLAG WOOL ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PERFORMING OPERATIONS ; PHYSICS ; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS ; SURFACE TREATMENT OF GLASS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240124&amp;DB=EPODOC&amp;CC=EP&amp;NR=4080253A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240124&amp;DB=EPODOC&amp;CC=EP&amp;NR=4080253A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOKARI Ryohei</creatorcontrib><creatorcontrib>FUKUI Hiroaki</creatorcontrib><creatorcontrib>KURIHARA Kazuma</creatorcontrib><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><description>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</description><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>GLASS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>JOINING GLASS TO GLASS OR OTHER MATERIALS</subject><subject>LAYERED PRODUCTS</subject><subject>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</subject><subject>METALLURGY</subject><subject>MINERAL OR SLAG WOOL</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</subject><subject>SURFACE TREATMENT OF GLASS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBy9AvxDHJ183F1DvH091MIDgkKdQ4JDXJVcPRzUfB1DfHwd1Fw8w9S8HX0C3VzBEl5-rkrBDv6uvIwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMDCwMjU2NHE2MilAAAhhMo2A</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>HOKARI Ryohei</creator><creator>FUKUI Hiroaki</creator><creator>KURIHARA Kazuma</creator><scope>EVB</scope></search><sort><creationdate>20240124</creationdate><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><author>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4080253A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>GLASS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>JOINING GLASS TO GLASS OR OTHER MATERIALS</topic><topic>LAYERED PRODUCTS</topic><topic>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</topic><topic>METALLURGY</topic><topic>MINERAL OR SLAG WOOL</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</topic><topic>SURFACE TREATMENT OF GLASS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HOKARI Ryohei</creatorcontrib><creatorcontrib>FUKUI Hiroaki</creatorcontrib><creatorcontrib>KURIHARA Kazuma</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOKARI Ryohei</au><au>FUKUI Hiroaki</au><au>KURIHARA Kazuma</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><date>2024-01-24</date><risdate>2024</risdate><abstract>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4080253A4
source esp@cenet
subjects CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
GLASS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
JOINING GLASS TO GLASS OR OTHER MATERIALS
LAYERED PRODUCTS
LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
METALLURGY
MINERAL OR SLAG WOOL
OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
OPTICS
PERFORMING OPERATIONS
PHYSICS
SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS
SURFACE TREATMENT OF GLASS
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TRANSPORTING
title ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOKARI%20Ryohei&rft.date=2024-01-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4080253A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true