ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME
An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HOKARI Ryohei FUKUI Hiroaki KURIHARA Kazuma |
description | An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4080253A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4080253A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4080253A43</originalsourceid><addsrcrecordid>eNrjZLBy9AvxDHJ183F1DvH091MIDgkKdQ4JDXJVcPRzUfB1DfHwd1Fw8w9S8HX0C3VzBEl5-rkrBDv6uvIwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMDCwMjU2NHE2MilAAAhhMo2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><source>esp@cenet</source><creator>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</creator><creatorcontrib>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</creatorcontrib><description>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</description><language>eng ; fre ; ger</language><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; GLASS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; JOINING GLASS TO GLASS OR OTHER MATERIALS ; LAYERED PRODUCTS ; LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM ; METALLURGY ; MINERAL OR SLAG WOOL ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PERFORMING OPERATIONS ; PHYSICS ; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS ; SURFACE TREATMENT OF GLASS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240124&DB=EPODOC&CC=EP&NR=4080253A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240124&DB=EPODOC&CC=EP&NR=4080253A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOKARI Ryohei</creatorcontrib><creatorcontrib>FUKUI Hiroaki</creatorcontrib><creatorcontrib>KURIHARA Kazuma</creatorcontrib><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><description>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</description><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>GLASS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>JOINING GLASS TO GLASS OR OTHER MATERIALS</subject><subject>LAYERED PRODUCTS</subject><subject>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</subject><subject>METALLURGY</subject><subject>MINERAL OR SLAG WOOL</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</subject><subject>SURFACE TREATMENT OF GLASS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBy9AvxDHJ183F1DvH091MIDgkKdQ4JDXJVcPRzUfB1DfHwd1Fw8w9S8HX0C3VzBEl5-rkrBDv6uvIwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXABMDCwMjU2NHE2MilAAAhhMo2A</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>HOKARI Ryohei</creator><creator>FUKUI Hiroaki</creator><creator>KURIHARA Kazuma</creator><scope>EVB</scope></search><sort><creationdate>20240124</creationdate><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><author>HOKARI Ryohei ; FUKUI Hiroaki ; KURIHARA Kazuma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4080253A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>GLASS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>JOINING GLASS TO GLASS OR OTHER MATERIALS</topic><topic>LAYERED PRODUCTS</topic><topic>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</topic><topic>METALLURGY</topic><topic>MINERAL OR SLAG WOOL</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</topic><topic>SURFACE TREATMENT OF GLASS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HOKARI Ryohei</creatorcontrib><creatorcontrib>FUKUI Hiroaki</creatorcontrib><creatorcontrib>KURIHARA Kazuma</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOKARI Ryohei</au><au>FUKUI Hiroaki</au><au>KURIHARA Kazuma</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME</title><date>2024-01-24</date><risdate>2024</risdate><abstract>An antireflection structure comprising a transparent substrate having a plurality of holes with U-shaped or V-shaped cross-sectional shapes perpendicular to a flat surface portion and a metal oxide film disposed on the surface portion of the transparent substrate and in the space portions formed in an upward direction from the bottom portions of holes in the transparent substrate, wherein the average diameter of the openings of the holes is 50 nm to 300 nm, the average distance between the center points of openings of the adjacent holes is 100 nm to 400 nm, and the depth of each hole from the surface portion of the substrate is 80 nm to 250 nm; and the thickness of the metal oxide film disposed in each of the space portions increases as the depth of each of the holes becomes larger, thereby reducing the difference in depth between the holes from the uppermost surface portion of the metal oxide film disposed on the surface portion to the surface portions of the metal oxide films in the space portions.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4080253A4 |
source | esp@cenet |
subjects | CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL GLASS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL JOINING GLASS TO GLASS OR OTHER MATERIALS LAYERED PRODUCTS LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM METALLURGY MINERAL OR SLAG WOOL OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PERFORMING OPERATIONS PHYSICS SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS SURFACE TREATMENT OF GLASS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | ANTIREFLECTION STRUCTURE AND METHOD FOR MANUFACTURING SAME |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOKARI%20Ryohei&rft.date=2024-01-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4080253A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |