PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION

Aspects described herein provide a method of performing phase selective convolution, including: receiving multi-phase pre-activation activation data; partitioning the multi-phase pre-activation data; applying a first activation function to the set of first phase pre-activation data to form a set of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NOORZAD, Parham, YANG, Yang, LIN, Jamie Menjay
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NOORZAD, Parham
YANG, Yang
LIN, Jamie Menjay
description Aspects described herein provide a method of performing phase selective convolution, including: receiving multi-phase pre-activation activation data; partitioning the multi-phase pre-activation data; applying a first activation function to the set of first phase pre-activation data to form a set of first phase activation output; convolving the set of first phase activation output with a first convolution kernel to form a first phase output feature map; negating the set of second phase activation data; applying a second activation function to the negated set of second phase pre-activation data to form a set of second phase activation output; convolving the set of second phase activation output with a second convolution kernel to form a second phase output feature map; negating the second phase output feature map; and training the neural network based on the first phase output feature map and the second phase output feature map.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4058941A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4058941A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4058941A13</originalsourceid><addsrcrecordid>eNrjZLAM8HAMdlUIdvVxdQ7xDHNVcPb3C_P3CQ3x9PdTCPcM8VBwifRz9PV0Vgh39XT3CIGp9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBqYWliaGjobGRCgBAF-HKKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION</title><source>esp@cenet</source><creator>NOORZAD, Parham ; YANG, Yang ; LIN, Jamie Menjay</creator><creatorcontrib>NOORZAD, Parham ; YANG, Yang ; LIN, Jamie Menjay</creatorcontrib><description>Aspects described herein provide a method of performing phase selective convolution, including: receiving multi-phase pre-activation activation data; partitioning the multi-phase pre-activation data; applying a first activation function to the set of first phase pre-activation data to form a set of first phase activation output; convolving the set of first phase activation output with a first convolution kernel to form a first phase output feature map; negating the set of second phase activation data; applying a second activation function to the negated set of second phase pre-activation data to form a set of second phase activation output; convolving the set of second phase activation output with a second convolution kernel to form a second phase output feature map; negating the second phase output feature map; and training the neural network based on the first phase output feature map and the second phase output feature map.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220921&amp;DB=EPODOC&amp;CC=EP&amp;NR=4058941A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220921&amp;DB=EPODOC&amp;CC=EP&amp;NR=4058941A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NOORZAD, Parham</creatorcontrib><creatorcontrib>YANG, Yang</creatorcontrib><creatorcontrib>LIN, Jamie Menjay</creatorcontrib><title>PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION</title><description>Aspects described herein provide a method of performing phase selective convolution, including: receiving multi-phase pre-activation activation data; partitioning the multi-phase pre-activation data; applying a first activation function to the set of first phase pre-activation data to form a set of first phase activation output; convolving the set of first phase activation output with a first convolution kernel to form a first phase output feature map; negating the set of second phase activation data; applying a second activation function to the negated set of second phase pre-activation data to form a set of second phase activation output; convolving the set of second phase activation output with a second convolution kernel to form a second phase output feature map; negating the second phase output feature map; and training the neural network based on the first phase output feature map and the second phase output feature map.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAM8HAMdlUIdvVxdQ7xDHNVcPb3C_P3CQ3x9PdTCPcM8VBwifRz9PV0Vgh39XT3CIGp9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBqYWliaGjobGRCgBAF-HKKo</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>NOORZAD, Parham</creator><creator>YANG, Yang</creator><creator>LIN, Jamie Menjay</creator><scope>EVB</scope></search><sort><creationdate>20220921</creationdate><title>PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION</title><author>NOORZAD, Parham ; YANG, Yang ; LIN, Jamie Menjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4058941A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NOORZAD, Parham</creatorcontrib><creatorcontrib>YANG, Yang</creatorcontrib><creatorcontrib>LIN, Jamie Menjay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NOORZAD, Parham</au><au>YANG, Yang</au><au>LIN, Jamie Menjay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION</title><date>2022-09-21</date><risdate>2022</risdate><abstract>Aspects described herein provide a method of performing phase selective convolution, including: receiving multi-phase pre-activation activation data; partitioning the multi-phase pre-activation data; applying a first activation function to the set of first phase pre-activation data to form a set of first phase activation output; convolving the set of first phase activation output with a first convolution kernel to form a first phase output feature map; negating the set of second phase activation data; applying a second activation function to the negated set of second phase pre-activation data to form a set of second phase activation output; convolving the set of second phase activation output with a second convolution kernel to form a second phase output feature map; negating the second phase output feature map; and training the neural network based on the first phase output feature map and the second phase output feature map.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4058941A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title PHASE SELECTIVE CONVOLUTION WITH DYNAMIC WEIGHT SELECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NOORZAD,%20Parham&rft.date=2022-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4058941A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true