THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION
The invention relates to a thermal power station (1) comprising (a) at least one thermal energy storage (10) having a housing (11), a storage chamber (12) with heat storage material (13) inside the storage chamber (12) and a fluid inlet port (14) fluidically connected to the storage chamber (12) and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | EGGERS, Jan Rudolf |
description | The invention relates to a thermal power station (1) comprising (a) at least one thermal energy storage (10) having a housing (11), a storage chamber (12) with heat storage material (13) inside the storage chamber (12) and a fluid inlet port (14) fluidically connected to the storage chamber (12) and a fluid outlet port (16) fluidically connected to the storage chamber (12), and (b) a Brayton cycle heat engine (20) comprising a gas turbine (21), a cooler (23) and a compressor (24) connected with each other by means of a closed cycle (26) containing a second working fluid (B), whereby (c) the Brayton cycle heat engine (20) further comprises a control unit arranged for operating the Brayton cycle heat engine (20) according to a Brayton cycle, (d) the gas turbine (21) is thermally coupled to the at least one thermal energy storage (10) by means of a first heat exchanger (25) and a first working fluid (A), the first working fluid (A) being different from the second working fluid (B), and (e) the gas turbine (21) is connected to a generator (30) for producing electrical power by means of the thermal energy from the thermal energy storage (10). The invention further relates to a method for generating electric power in a thermal power station (1). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4055257A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4055257A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4055257A13</originalsourceid><addsrcrecordid>eNrjZIgM8XAN8nX0UQjwD3cNUggOcQzx9PdTcPRzUfB1DfHwd1Fw8w9ScHf1cw0Cyvi5K7j6uDqHBHk6QzV4AtUqYDWDh4E1LTGnOJUXSnMzKLi5hjh76KYW5MenFhckJqfmpZbEuwaYGJiaGpmaOxoaE6EEALbBMQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION</title><source>esp@cenet</source><creator>EGGERS, Jan Rudolf</creator><creatorcontrib>EGGERS, Jan Rudolf</creatorcontrib><description>The invention relates to a thermal power station (1) comprising (a) at least one thermal energy storage (10) having a housing (11), a storage chamber (12) with heat storage material (13) inside the storage chamber (12) and a fluid inlet port (14) fluidically connected to the storage chamber (12) and a fluid outlet port (16) fluidically connected to the storage chamber (12), and (b) a Brayton cycle heat engine (20) comprising a gas turbine (21), a cooler (23) and a compressor (24) connected with each other by means of a closed cycle (26) containing a second working fluid (B), whereby (c) the Brayton cycle heat engine (20) further comprises a control unit arranged for operating the Brayton cycle heat engine (20) according to a Brayton cycle, (d) the gas turbine (21) is thermally coupled to the at least one thermal energy storage (10) by means of a first heat exchanger (25) and a first working fluid (A), the first working fluid (A) being different from the second working fluid (B), and (e) the gas turbine (21) is connected to a generator (30) for producing electrical power by means of the thermal energy from the thermal energy storage (10). The invention further relates to a method for generating electric power in a thermal power station (1).</description><language>eng ; fre ; ger</language><subject>AIR INTAKES FOR JET-PROPULSION PLANTS ; BLASTING ; COMBUSTION ENGINES ; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS ; GAS-TURBINE PLANTS ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MACHINES OR ENGINES FOR LIQUIDS ; MECHANICAL ENGINEERING ; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOTOTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISEPROVIDED FOR ; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR ; PRODUCING MECHANICAL POWER ; RANGES ; SOLAR HEAT COLLECTORS ; SOLAR HEAT SYSTEMS ; SPRING, WEIGHT, INERTIA OR LIKE MOTORS ; VENTILATING ; WEAPONS ; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220914&DB=EPODOC&CC=EP&NR=4055257A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220914&DB=EPODOC&CC=EP&NR=4055257A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>EGGERS, Jan Rudolf</creatorcontrib><title>THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION</title><description>The invention relates to a thermal power station (1) comprising (a) at least one thermal energy storage (10) having a housing (11), a storage chamber (12) with heat storage material (13) inside the storage chamber (12) and a fluid inlet port (14) fluidically connected to the storage chamber (12) and a fluid outlet port (16) fluidically connected to the storage chamber (12), and (b) a Brayton cycle heat engine (20) comprising a gas turbine (21), a cooler (23) and a compressor (24) connected with each other by means of a closed cycle (26) containing a second working fluid (B), whereby (c) the Brayton cycle heat engine (20) further comprises a control unit arranged for operating the Brayton cycle heat engine (20) according to a Brayton cycle, (d) the gas turbine (21) is thermally coupled to the at least one thermal energy storage (10) by means of a first heat exchanger (25) and a first working fluid (A), the first working fluid (A) being different from the second working fluid (B), and (e) the gas turbine (21) is connected to a generator (30) for producing electrical power by means of the thermal energy from the thermal energy storage (10). The invention further relates to a method for generating electric power in a thermal power station (1).</description><subject>AIR INTAKES FOR JET-PROPULSION PLANTS</subject><subject>BLASTING</subject><subject>COMBUSTION ENGINES</subject><subject>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</subject><subject>GAS-TURBINE PLANTS</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES FOR LIQUIDS</subject><subject>MECHANICAL ENGINEERING</subject><subject>MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOTOTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISEPROVIDED FOR</subject><subject>OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR</subject><subject>PRODUCING MECHANICAL POWER</subject><subject>RANGES</subject><subject>SOLAR HEAT COLLECTORS</subject><subject>SOLAR HEAT SYSTEMS</subject><subject>SPRING, WEIGHT, INERTIA OR LIKE MOTORS</subject><subject>VENTILATING</subject><subject>WEAPONS</subject><subject>WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgM8XAN8nX0UQjwD3cNUggOcQzx9PdTcPRzUfB1DfHwd1Fw8w9ScHf1cw0Cyvi5K7j6uDqHBHk6QzV4AtUqYDWDh4E1LTGnOJUXSnMzKLi5hjh76KYW5MenFhckJqfmpZbEuwaYGJiaGpmaOxoaE6EEALbBMQc</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>EGGERS, Jan Rudolf</creator><scope>EVB</scope></search><sort><creationdate>20220914</creationdate><title>THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION</title><author>EGGERS, Jan Rudolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4055257A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>AIR INTAKES FOR JET-PROPULSION PLANTS</topic><topic>BLASTING</topic><topic>COMBUSTION ENGINES</topic><topic>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</topic><topic>GAS-TURBINE PLANTS</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES FOR LIQUIDS</topic><topic>MECHANICAL ENGINEERING</topic><topic>MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOTOTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISEPROVIDED FOR</topic><topic>OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR</topic><topic>PRODUCING MECHANICAL POWER</topic><topic>RANGES</topic><topic>SOLAR HEAT COLLECTORS</topic><topic>SOLAR HEAT SYSTEMS</topic><topic>SPRING, WEIGHT, INERTIA OR LIKE MOTORS</topic><topic>VENTILATING</topic><topic>WEAPONS</topic><topic>WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS</topic><toplevel>online_resources</toplevel><creatorcontrib>EGGERS, Jan Rudolf</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>EGGERS, Jan Rudolf</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION</title><date>2022-09-14</date><risdate>2022</risdate><abstract>The invention relates to a thermal power station (1) comprising (a) at least one thermal energy storage (10) having a housing (11), a storage chamber (12) with heat storage material (13) inside the storage chamber (12) and a fluid inlet port (14) fluidically connected to the storage chamber (12) and a fluid outlet port (16) fluidically connected to the storage chamber (12), and (b) a Brayton cycle heat engine (20) comprising a gas turbine (21), a cooler (23) and a compressor (24) connected with each other by means of a closed cycle (26) containing a second working fluid (B), whereby (c) the Brayton cycle heat engine (20) further comprises a control unit arranged for operating the Brayton cycle heat engine (20) according to a Brayton cycle, (d) the gas turbine (21) is thermally coupled to the at least one thermal energy storage (10) by means of a first heat exchanger (25) and a first working fluid (A), the first working fluid (A) being different from the second working fluid (B), and (e) the gas turbine (21) is connected to a generator (30) for producing electrical power by means of the thermal energy from the thermal energy storage (10). The invention further relates to a method for generating electric power in a thermal power station (1).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4055257A1 |
source | esp@cenet |
subjects | AIR INTAKES FOR JET-PROPULSION PLANTS BLASTING COMBUSTION ENGINES CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS GAS-TURBINE PLANTS HEATING HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS LIGHTING MACHINES OR ENGINES FOR LIQUIDS MECHANICAL ENGINEERING MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOTOTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISEPROVIDED FOR OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR PRODUCING MECHANICAL POWER RANGES SOLAR HEAT COLLECTORS SOLAR HEAT SYSTEMS SPRING, WEIGHT, INERTIA OR LIKE MOTORS VENTILATING WEAPONS WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS |
title | THERMAL POWER STATION AND METHOD FOR GENERATING ELECTRIC POWER IN A THERMAL POWER STATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=EGGERS,%20Jan%20Rudolf&rft.date=2022-09-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4055257A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |