MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING
Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PROVOST, R. James HAKKARINEN, Douglas COWEE, Morgan OLSEN, Christopher S ZAREMBA, Christopher R ROBINSON, Everett |
description | Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4032003A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4032003A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4032003A13</originalsourceid><addsrcrecordid>eNrjZDD3dXT28PRz1fVxdQzy8_RzV3ByDHZ1UQiODA5x9VVw8w9SCPMMCgl19FFw8_EPV_B1DXENAirjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBsZGBgbGjobGRCgBAOvlJ7U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><source>esp@cenet</source><creator>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</creator><creatorcontrib>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</creatorcontrib><description>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220727&DB=EPODOC&CC=EP&NR=4032003A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220727&DB=EPODOC&CC=EP&NR=4032003A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PROVOST, R. James</creatorcontrib><creatorcontrib>HAKKARINEN, Douglas</creatorcontrib><creatorcontrib>COWEE, Morgan</creatorcontrib><creatorcontrib>OLSEN, Christopher S</creatorcontrib><creatorcontrib>ZAREMBA, Christopher R</creatorcontrib><creatorcontrib>ROBINSON, Everett</creatorcontrib><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><description>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD3dXT28PRz1fVxdQzy8_RzV3ByDHZ1UQiODA5x9VVw8w9SCPMMCgl19FFw8_EPV_B1DXENAirjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBsZGBgbGjobGRCgBAOvlJ7U</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>PROVOST, R. James</creator><creator>HAKKARINEN, Douglas</creator><creator>COWEE, Morgan</creator><creator>OLSEN, Christopher S</creator><creator>ZAREMBA, Christopher R</creator><creator>ROBINSON, Everett</creator><scope>EVB</scope></search><sort><creationdate>20220727</creationdate><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><author>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4032003A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PROVOST, R. James</creatorcontrib><creatorcontrib>HAKKARINEN, Douglas</creatorcontrib><creatorcontrib>COWEE, Morgan</creatorcontrib><creatorcontrib>OLSEN, Christopher S</creatorcontrib><creatorcontrib>ZAREMBA, Christopher R</creatorcontrib><creatorcontrib>ROBINSON, Everett</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PROVOST, R. James</au><au>HAKKARINEN, Douglas</au><au>COWEE, Morgan</au><au>OLSEN, Christopher S</au><au>ZAREMBA, Christopher R</au><au>ROBINSON, Everett</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><date>2022-07-27</date><risdate>2022</risdate><abstract>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4032003A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PROVOST,%20R.%20James&rft.date=2022-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4032003A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |