MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING

Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PROVOST, R. James, HAKKARINEN, Douglas, COWEE, Morgan, OLSEN, Christopher S, ZAREMBA, Christopher R, ROBINSON, Everett
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PROVOST, R. James
HAKKARINEN, Douglas
COWEE, Morgan
OLSEN, Christopher S
ZAREMBA, Christopher R
ROBINSON, Everett
description Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4032003A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4032003A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4032003A13</originalsourceid><addsrcrecordid>eNrjZDD3dXT28PRz1fVxdQzy8_RzV3ByDHZ1UQiODA5x9VVw8w9SCPMMCgl19FFw8_EPV_B1DXENAirjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBsZGBgbGjobGRCgBAOvlJ7U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><source>esp@cenet</source><creator>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</creator><creatorcontrib>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</creatorcontrib><description>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220727&amp;DB=EPODOC&amp;CC=EP&amp;NR=4032003A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220727&amp;DB=EPODOC&amp;CC=EP&amp;NR=4032003A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PROVOST, R. James</creatorcontrib><creatorcontrib>HAKKARINEN, Douglas</creatorcontrib><creatorcontrib>COWEE, Morgan</creatorcontrib><creatorcontrib>OLSEN, Christopher S</creatorcontrib><creatorcontrib>ZAREMBA, Christopher R</creatorcontrib><creatorcontrib>ROBINSON, Everett</creatorcontrib><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><description>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD3dXT28PRz1fVxdQzy8_RzV3ByDHZ1UQiODA5x9VVw8w9SCPMMCgl19FFw8_EPV_B1DXENAirjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBsZGBgbGjobGRCgBAOvlJ7U</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>PROVOST, R. James</creator><creator>HAKKARINEN, Douglas</creator><creator>COWEE, Morgan</creator><creator>OLSEN, Christopher S</creator><creator>ZAREMBA, Christopher R</creator><creator>ROBINSON, Everett</creator><scope>EVB</scope></search><sort><creationdate>20220727</creationdate><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><author>PROVOST, R. James ; HAKKARINEN, Douglas ; COWEE, Morgan ; OLSEN, Christopher S ; ZAREMBA, Christopher R ; ROBINSON, Everett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4032003A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PROVOST, R. James</creatorcontrib><creatorcontrib>HAKKARINEN, Douglas</creatorcontrib><creatorcontrib>COWEE, Morgan</creatorcontrib><creatorcontrib>OLSEN, Christopher S</creatorcontrib><creatorcontrib>ZAREMBA, Christopher R</creatorcontrib><creatorcontrib>ROBINSON, Everett</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PROVOST, R. James</au><au>HAKKARINEN, Douglas</au><au>COWEE, Morgan</au><au>OLSEN, Christopher S</au><au>ZAREMBA, Christopher R</au><au>ROBINSON, Everett</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING</title><date>2022-07-27</date><risdate>2022</risdate><abstract>Various aspects described herein relate to a system that utilized deep learning and neural networks to estimate/predict an amount of natural resource production in a well given a set of parameters indicative of physical changes to the well. In one aspect, a virtual flow meter includes memory having computer-readable instructions stored therein and one or more processors configured to execute the computer-readable instructions to receive one or more input parameters indicative of physical changes to at least one well; apply the one or more input parameters to a trained neural network architecture; and determine one or more outputs of the trained neural network architecture, the one or more outputs corresponding to predicted fluid output of the at least one well.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4032003A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title MACHINE-LEARNING BASED SYSTEM FOR VIRTUAL FLOW METERING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PROVOST,%20R.%20James&rft.date=2022-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4032003A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true