INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING

A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DIAZ GRANADOS PERTUZ, Ivan, DHARMARATNAM, Athithan, GOMEZ, Francisco Jose, FISCHER, Karsten, KISRA, Mohamed Saad
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DIAZ GRANADOS PERTUZ, Ivan
DHARMARATNAM, Athithan
GOMEZ, Francisco Jose
FISCHER, Karsten
KISRA, Mohamed Saad
description A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4028639A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4028639A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4028639A13</originalsourceid><addsrcrecordid>eNrjZPD09HPzD_J1DPH091NwjQgJcnQGM92C_H0VXBw9fSIVXII8fXw8_dwVglwD_INCghVCg0E8X0dnD08_VwUfV8cgP6AADwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2Jdw0wMTCyMDO2dDQ0JkIJAArHLRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><source>esp@cenet</source><creator>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</creator><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</creatorcontrib><description>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220720&amp;DB=EPODOC&amp;CC=EP&amp;NR=4028639A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220720&amp;DB=EPODOC&amp;CC=EP&amp;NR=4028639A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan</creatorcontrib><creatorcontrib>DHARMARATNAM, Athithan</creatorcontrib><creatorcontrib>GOMEZ, Francisco Jose</creatorcontrib><creatorcontrib>FISCHER, Karsten</creatorcontrib><creatorcontrib>KISRA, Mohamed Saad</creatorcontrib><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><description>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD09HPzD_J1DPH091NwjQgJcnQGM92C_H0VXBw9fSIVXII8fXw8_dwVglwD_INCghVCg0E8X0dnD08_VwUfV8cgP6AADwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2Jdw0wMTCyMDO2dDQ0JkIJAArHLRU</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>DIAZ GRANADOS PERTUZ, Ivan</creator><creator>DHARMARATNAM, Athithan</creator><creator>GOMEZ, Francisco Jose</creator><creator>FISCHER, Karsten</creator><creator>KISRA, Mohamed Saad</creator><scope>EVB</scope></search><sort><creationdate>20220720</creationdate><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><author>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4028639A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan</creatorcontrib><creatorcontrib>DHARMARATNAM, Athithan</creatorcontrib><creatorcontrib>GOMEZ, Francisco Jose</creatorcontrib><creatorcontrib>FISCHER, Karsten</creatorcontrib><creatorcontrib>KISRA, Mohamed Saad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DIAZ GRANADOS PERTUZ, Ivan</au><au>DHARMARATNAM, Athithan</au><au>GOMEZ, Francisco Jose</au><au>FISCHER, Karsten</au><au>KISRA, Mohamed Saad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><date>2022-07-20</date><risdate>2022</risdate><abstract>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4028639A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
title INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DIAZ%20GRANADOS%20PERTUZ,%20Ivan&rft.date=2022-07-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4028639A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true