INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING
A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DIAZ GRANADOS PERTUZ, Ivan DHARMARATNAM, Athithan GOMEZ, Francisco Jose FISCHER, Karsten KISRA, Mohamed Saad |
description | A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4028639A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4028639A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4028639A13</originalsourceid><addsrcrecordid>eNrjZPD09HPzD_J1DPH091NwjQgJcnQGM92C_H0VXBw9fSIVXII8fXw8_dwVglwD_INCghVCg0E8X0dnD08_VwUfV8cgP6AADwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2Jdw0wMTCyMDO2dDQ0JkIJAArHLRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><source>esp@cenet</source><creator>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</creator><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</creatorcontrib><description>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220720&DB=EPODOC&CC=EP&NR=4028639A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220720&DB=EPODOC&CC=EP&NR=4028639A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan</creatorcontrib><creatorcontrib>DHARMARATNAM, Athithan</creatorcontrib><creatorcontrib>GOMEZ, Francisco Jose</creatorcontrib><creatorcontrib>FISCHER, Karsten</creatorcontrib><creatorcontrib>KISRA, Mohamed Saad</creatorcontrib><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><description>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD09HPzD_J1DPH091NwjQgJcnQGM92C_H0VXBw9fSIVXII8fXw8_dwVglwD_INCghVCg0E8X0dnD08_VwUfV8cgP6AADwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2Jdw0wMTCyMDO2dDQ0JkIJAArHLRU</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>DIAZ GRANADOS PERTUZ, Ivan</creator><creator>DHARMARATNAM, Athithan</creator><creator>GOMEZ, Francisco Jose</creator><creator>FISCHER, Karsten</creator><creator>KISRA, Mohamed Saad</creator><scope>EVB</scope></search><sort><creationdate>20220720</creationdate><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><author>DIAZ GRANADOS PERTUZ, Ivan ; DHARMARATNAM, Athithan ; GOMEZ, Francisco Jose ; FISCHER, Karsten ; KISRA, Mohamed Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4028639A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DIAZ GRANADOS PERTUZ, Ivan</creatorcontrib><creatorcontrib>DHARMARATNAM, Athithan</creatorcontrib><creatorcontrib>GOMEZ, Francisco Jose</creatorcontrib><creatorcontrib>FISCHER, Karsten</creatorcontrib><creatorcontrib>KISRA, Mohamed Saad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DIAZ GRANADOS PERTUZ, Ivan</au><au>DHARMARATNAM, Athithan</au><au>GOMEZ, Francisco Jose</au><au>FISCHER, Karsten</au><au>KISRA, Mohamed Saad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING</title><date>2022-07-20</date><risdate>2022</risdate><abstract>A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4028639A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING EARTH DRILLING EARTH DRILLING, e.g. DEEP DRILLING FIXED CONSTRUCTIONS MINING OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS PHYSICS |
title | INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DIAZ%20GRANADOS%20PERTUZ,%20Ivan&rft.date=2022-07-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4028639A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |