EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA
Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | RAJENDRAN, Srivignesh BADRINARAYANAN, Vijay RABINOVICH, Andrew VAN AS, Tarrence WU, Zhengyang ZIMMERMANN, Joelle |
description | Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4018288A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4018288A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4018288A13</originalsourceid><addsrcrecordid>eNrjZDBzjXRVCAlydPb29HNXcPRzUXB3jHJVcA0O8fR1DPH091MIDQbJ-Lu56TpGeAYrODv6ugY58jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAEwNDCyMLC0dDYyKUAACj_ic8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><source>esp@cenet</source><creator>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</creator><creatorcontrib>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</creatorcontrib><description>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220629&DB=EPODOC&CC=EP&NR=4018288A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220629&DB=EPODOC&CC=EP&NR=4018288A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RAJENDRAN, Srivignesh</creatorcontrib><creatorcontrib>BADRINARAYANAN, Vijay</creatorcontrib><creatorcontrib>RABINOVICH, Andrew</creatorcontrib><creatorcontrib>VAN AS, Tarrence</creatorcontrib><creatorcontrib>WU, Zhengyang</creatorcontrib><creatorcontrib>ZIMMERMANN, Joelle</creatorcontrib><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><description>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBzjXRVCAlydPb29HNXcPRzUXB3jHJVcA0O8fR1DPH091MIDQbJ-Lu56TpGeAYrODv6ugY58jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAEwNDCyMLC0dDYyKUAACj_ic8</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>RAJENDRAN, Srivignesh</creator><creator>BADRINARAYANAN, Vijay</creator><creator>RABINOVICH, Andrew</creator><creator>VAN AS, Tarrence</creator><creator>WU, Zhengyang</creator><creator>ZIMMERMANN, Joelle</creator><scope>EVB</scope></search><sort><creationdate>20220629</creationdate><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><author>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4018288A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>RAJENDRAN, Srivignesh</creatorcontrib><creatorcontrib>BADRINARAYANAN, Vijay</creatorcontrib><creatorcontrib>RABINOVICH, Andrew</creatorcontrib><creatorcontrib>VAN AS, Tarrence</creatorcontrib><creatorcontrib>WU, Zhengyang</creatorcontrib><creatorcontrib>ZIMMERMANN, Joelle</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RAJENDRAN, Srivignesh</au><au>BADRINARAYANAN, Vijay</au><au>RABINOVICH, Andrew</au><au>VAN AS, Tarrence</au><au>WU, Zhengyang</au><au>ZIMMERMANN, Joelle</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><date>2022-06-29</date><risdate>2022</risdate><abstract>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4018288A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RAJENDRAN,%20Srivignesh&rft.date=2022-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4018288A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |