EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA

Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RAJENDRAN, Srivignesh, BADRINARAYANAN, Vijay, RABINOVICH, Andrew, VAN AS, Tarrence, WU, Zhengyang, ZIMMERMANN, Joelle
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RAJENDRAN, Srivignesh
BADRINARAYANAN, Vijay
RABINOVICH, Andrew
VAN AS, Tarrence
WU, Zhengyang
ZIMMERMANN, Joelle
description Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4018288A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4018288A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4018288A13</originalsourceid><addsrcrecordid>eNrjZDBzjXRVCAlydPb29HNXcPRzUXB3jHJVcA0O8fR1DPH091MIDQbJ-Lu56TpGeAYrODv6ugY58jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAEwNDCyMLC0dDYyKUAACj_ic8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><source>esp@cenet</source><creator>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</creator><creatorcontrib>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</creatorcontrib><description>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220629&amp;DB=EPODOC&amp;CC=EP&amp;NR=4018288A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220629&amp;DB=EPODOC&amp;CC=EP&amp;NR=4018288A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RAJENDRAN, Srivignesh</creatorcontrib><creatorcontrib>BADRINARAYANAN, Vijay</creatorcontrib><creatorcontrib>RABINOVICH, Andrew</creatorcontrib><creatorcontrib>VAN AS, Tarrence</creatorcontrib><creatorcontrib>WU, Zhengyang</creatorcontrib><creatorcontrib>ZIMMERMANN, Joelle</creatorcontrib><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><description>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBzjXRVCAlydPb29HNXcPRzUXB3jHJVcA0O8fR1DPH091MIDQbJ-Lu56TpGeAYrODv6ugY58jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAEwNDCyMLC0dDYyKUAACj_ic8</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>RAJENDRAN, Srivignesh</creator><creator>BADRINARAYANAN, Vijay</creator><creator>RABINOVICH, Andrew</creator><creator>VAN AS, Tarrence</creator><creator>WU, Zhengyang</creator><creator>ZIMMERMANN, Joelle</creator><scope>EVB</scope></search><sort><creationdate>20220629</creationdate><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><author>RAJENDRAN, Srivignesh ; BADRINARAYANAN, Vijay ; RABINOVICH, Andrew ; VAN AS, Tarrence ; WU, Zhengyang ; ZIMMERMANN, Joelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4018288A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>RAJENDRAN, Srivignesh</creatorcontrib><creatorcontrib>BADRINARAYANAN, Vijay</creatorcontrib><creatorcontrib>RABINOVICH, Andrew</creatorcontrib><creatorcontrib>VAN AS, Tarrence</creatorcontrib><creatorcontrib>WU, Zhengyang</creatorcontrib><creatorcontrib>ZIMMERMANN, Joelle</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RAJENDRAN, Srivignesh</au><au>BADRINARAYANAN, Vijay</au><au>RABINOVICH, Andrew</au><au>VAN AS, Tarrence</au><au>WU, Zhengyang</au><au>ZIMMERMANN, Joelle</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA</title><date>2022-06-29</date><risdate>2022</risdate><abstract>Techniques related to the computation of gaze vectors of users of wearable devices are disclosed. A neural network may be trained through first and second training steps. The neural network may include a set of feature encoding layers and a plurality of sets of task-specific layers that each operate on an output of the set of feature encoding layers. During the first training step, a first image of a first eye may be provided to the neural network, eye segmentation data may be generated using the neural network, and the set of feature encoding layers may be trained. During the second training step, a second image of a second eye may be provided to the neural network, network output data may be generated using the neural network, and the plurality of sets of task-specific layers may be trained.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4018288A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title EYE TRACKING AND GAZE ESTIMATION USING OFF-AXIS CAMERA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RAJENDRAN,%20Srivignesh&rft.date=2022-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4018288A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true