MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS

Methods, systems, and devices for improving continuous glucose monitoring ("CGM") are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GEE, Elaine, NISHIDA, Jeffrey, AJEMBA, Peter, NOGUEIRA, Keith, VARSAVSKY, Andrea
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GEE, Elaine
NISHIDA, Jeffrey
AJEMBA, Peter
NOGUEIRA, Keith
VARSAVSKY, Andrea
description Methods, systems, and devices for improving continuous glucose monitoring ("CGM") are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4014863A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4014863A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4014863A13</originalsourceid><addsrcrecordid>eNqNjEEOgjAQRdm4MOod5gCaSCDGbW0HaCwzZlrWhJi6MkqCt_DSIngAV__n572_TN610pUlBIdKyFIJNRt0HgoWMBhQh-_ITXAWxYMiAyjChNx48Eh-5BqPoJmMDZZpZjSLzO4WTk7ReWojG1BqS2p6LV2jeXTnG79OFrfuPsTNL1cJFBh0tYv9s41D313jI75avOT7ND8eMpVmfyAfsLc_BQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS</title><source>esp@cenet</source><creator>GEE, Elaine ; NISHIDA, Jeffrey ; AJEMBA, Peter ; NOGUEIRA, Keith ; VARSAVSKY, Andrea</creator><creatorcontrib>GEE, Elaine ; NISHIDA, Jeffrey ; AJEMBA, Peter ; NOGUEIRA, Keith ; VARSAVSKY, Andrea</creatorcontrib><description>Methods, systems, and devices for improving continuous glucose monitoring ("CGM") are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.</description><language>eng ; fre ; ger</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220622&amp;DB=EPODOC&amp;CC=EP&amp;NR=4014863A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25553,76306</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220622&amp;DB=EPODOC&amp;CC=EP&amp;NR=4014863A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GEE, Elaine</creatorcontrib><creatorcontrib>NISHIDA, Jeffrey</creatorcontrib><creatorcontrib>AJEMBA, Peter</creatorcontrib><creatorcontrib>NOGUEIRA, Keith</creatorcontrib><creatorcontrib>VARSAVSKY, Andrea</creatorcontrib><title>MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS</title><description>Methods, systems, and devices for improving continuous glucose monitoring ("CGM") are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEOgjAQRdm4MOod5gCaSCDGbW0HaCwzZlrWhJi6MkqCt_DSIngAV__n572_TN610pUlBIdKyFIJNRt0HgoWMBhQh-_ITXAWxYMiAyjChNx48Eh-5BqPoJmMDZZpZjSLzO4WTk7ReWojG1BqS2p6LV2jeXTnG79OFrfuPsTNL1cJFBh0tYv9s41D313jI75avOT7ND8eMpVmfyAfsLc_BQ</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>GEE, Elaine</creator><creator>NISHIDA, Jeffrey</creator><creator>AJEMBA, Peter</creator><creator>NOGUEIRA, Keith</creator><creator>VARSAVSKY, Andrea</creator><scope>EVB</scope></search><sort><creationdate>20220622</creationdate><title>MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS</title><author>GEE, Elaine ; NISHIDA, Jeffrey ; AJEMBA, Peter ; NOGUEIRA, Keith ; VARSAVSKY, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4014863A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>GEE, Elaine</creatorcontrib><creatorcontrib>NISHIDA, Jeffrey</creatorcontrib><creatorcontrib>AJEMBA, Peter</creatorcontrib><creatorcontrib>NOGUEIRA, Keith</creatorcontrib><creatorcontrib>VARSAVSKY, Andrea</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GEE, Elaine</au><au>NISHIDA, Jeffrey</au><au>AJEMBA, Peter</au><au>NOGUEIRA, Keith</au><au>VARSAVSKY, Andrea</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS</title><date>2022-06-22</date><risdate>2022</risdate><abstract>Methods, systems, and devices for improving continuous glucose monitoring ("CGM") are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4014863A1
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title MACHINE LEARNING MODELS FOR DETECTING OUTLIERS AND ERRONEOUS SENSOR USE CONDITIONS AND CORRECTING, BLANKING, OR TERMINATING GLUCOSE SENSORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GEE,%20Elaine&rft.date=2022-06-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4014863A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true