MACHINE-LEARNING BASED GESTURE RECOGNITION
The subject technology receives, from a first sensor of a device, first sensor output of a first type. The subject technology receives, from a second sensor of the device, second sensor output of a second type, the first and second sensors being non-touch sensors. The subject technology provides the...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WESTING, Brandt M AVERY, Keith P DHANANI, Jamil MAUDGALYA, Varun JEONG, Minwoo RUDCHENKO, Dmytro KAUR, Harveen PAEK, Timothy S |
description | The subject technology receives, from a first sensor of a device, first sensor output of a first type. The subject technology receives, from a second sensor of the device, second sensor output of a second type, the first and second sensors being non-touch sensors. The subject technology provides the first sensor output and the second sensor output as inputs to a machine learning model, the machine learning model having been trained to output a predicted touch-based gesture based on sensor output of the first type and sensor output of the second type. The subject technology provides a predicted touch-based gesture based on output from the machine learning model. Further, the subject technology adjusts an audio output level of the device based on the predicted gesture, and where the device is an audio output device. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4004693A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4004693A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4004693A13</originalsourceid><addsrcrecordid>eNrjZNDydXT28PRz1fVxdQzy8_RzV3ByDHZ1UXB3DQ4JDXJVCHJ19nf38wzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBgYmZpbGjobGRCgBAAdBJD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING BASED GESTURE RECOGNITION</title><source>esp@cenet</source><creator>WESTING, Brandt M ; AVERY, Keith P ; DHANANI, Jamil ; MAUDGALYA, Varun ; JEONG, Minwoo ; RUDCHENKO, Dmytro ; KAUR, Harveen ; PAEK, Timothy S</creator><creatorcontrib>WESTING, Brandt M ; AVERY, Keith P ; DHANANI, Jamil ; MAUDGALYA, Varun ; JEONG, Minwoo ; RUDCHENKO, Dmytro ; KAUR, Harveen ; PAEK, Timothy S</creatorcontrib><description>The subject technology receives, from a first sensor of a device, first sensor output of a first type. The subject technology receives, from a second sensor of the device, second sensor output of a second type, the first and second sensors being non-touch sensors. The subject technology provides the first sensor output and the second sensor output as inputs to a machine learning model, the machine learning model having been trained to output a predicted touch-based gesture based on sensor output of the first type and sensor output of the second type. The subject technology provides a predicted touch-based gesture based on output from the machine learning model. Further, the subject technology adjusts an audio output level of the device based on the predicted gesture, and where the device is an audio output device.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220601&DB=EPODOC&CC=EP&NR=4004693A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220601&DB=EPODOC&CC=EP&NR=4004693A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WESTING, Brandt M</creatorcontrib><creatorcontrib>AVERY, Keith P</creatorcontrib><creatorcontrib>DHANANI, Jamil</creatorcontrib><creatorcontrib>MAUDGALYA, Varun</creatorcontrib><creatorcontrib>JEONG, Minwoo</creatorcontrib><creatorcontrib>RUDCHENKO, Dmytro</creatorcontrib><creatorcontrib>KAUR, Harveen</creatorcontrib><creatorcontrib>PAEK, Timothy S</creatorcontrib><title>MACHINE-LEARNING BASED GESTURE RECOGNITION</title><description>The subject technology receives, from a first sensor of a device, first sensor output of a first type. The subject technology receives, from a second sensor of the device, second sensor output of a second type, the first and second sensors being non-touch sensors. The subject technology provides the first sensor output and the second sensor output as inputs to a machine learning model, the machine learning model having been trained to output a predicted touch-based gesture based on sensor output of the first type and sensor output of the second type. The subject technology provides a predicted touch-based gesture based on output from the machine learning model. Further, the subject technology adjusts an audio output level of the device based on the predicted gesture, and where the device is an audio output device.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDydXT28PRz1fVxdQzy8_RzV3ByDHZ1UXB3DQ4JDXJVCHJ19nf38wzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmBgYmZpbGjobGRCgBAAdBJD4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>WESTING, Brandt M</creator><creator>AVERY, Keith P</creator><creator>DHANANI, Jamil</creator><creator>MAUDGALYA, Varun</creator><creator>JEONG, Minwoo</creator><creator>RUDCHENKO, Dmytro</creator><creator>KAUR, Harveen</creator><creator>PAEK, Timothy S</creator><scope>EVB</scope></search><sort><creationdate>20220601</creationdate><title>MACHINE-LEARNING BASED GESTURE RECOGNITION</title><author>WESTING, Brandt M ; AVERY, Keith P ; DHANANI, Jamil ; MAUDGALYA, Varun ; JEONG, Minwoo ; RUDCHENKO, Dmytro ; KAUR, Harveen ; PAEK, Timothy S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4004693A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WESTING, Brandt M</creatorcontrib><creatorcontrib>AVERY, Keith P</creatorcontrib><creatorcontrib>DHANANI, Jamil</creatorcontrib><creatorcontrib>MAUDGALYA, Varun</creatorcontrib><creatorcontrib>JEONG, Minwoo</creatorcontrib><creatorcontrib>RUDCHENKO, Dmytro</creatorcontrib><creatorcontrib>KAUR, Harveen</creatorcontrib><creatorcontrib>PAEK, Timothy S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WESTING, Brandt M</au><au>AVERY, Keith P</au><au>DHANANI, Jamil</au><au>MAUDGALYA, Varun</au><au>JEONG, Minwoo</au><au>RUDCHENKO, Dmytro</au><au>KAUR, Harveen</au><au>PAEK, Timothy S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING BASED GESTURE RECOGNITION</title><date>2022-06-01</date><risdate>2022</risdate><abstract>The subject technology receives, from a first sensor of a device, first sensor output of a first type. The subject technology receives, from a second sensor of the device, second sensor output of a second type, the first and second sensors being non-touch sensors. The subject technology provides the first sensor output and the second sensor output as inputs to a machine learning model, the machine learning model having been trained to output a predicted touch-based gesture based on sensor output of the first type and sensor output of the second type. The subject technology provides a predicted touch-based gesture based on output from the machine learning model. Further, the subject technology adjusts an audio output level of the device based on the predicted gesture, and where the device is an audio output device.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4004693A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | MACHINE-LEARNING BASED GESTURE RECOGNITION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WESTING,%20Brandt%20M&rft.date=2022-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4004693A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |