METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS
A method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to en...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | VARMA, Arnav ZONOOZ, Bahram CHAWLA, Hemang ARANI, Elahe |
description | A method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to enforce the scale-consistency and/or -awareness on the monocular self-supervised ego-motion and depth estimation. A relative weight assigned to the GPS to scale loss exponentially increases as training progresses. The depth and ego-motion prediction neural networks are trained using an appearance-based photometric loss between real and synthesized target images, as well as a smoothness loss on the depth predictions. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4002215B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4002215B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4002215B13</originalsourceid><addsrcrecordid>eNqNi00OgjAQRtm4MOod5gJEQD1AbQdpLJ2mUyCuCDF1ZZQED-Gx_YkHcPW-5H1vnjxrDBUpCAS6dp5aBJbCIEiyrDmglScQVq3J_4TohEeLzKAtCKhJoQEqgdGUKTcOfasZFSh0ofqkgAdKawqaLDiPSsvvtNh4Yd4IHfkjL5PZZbhOcfXjIoESg6zSON77OI3DOd7io0e3zbKiyHf7fPPH5QW45j3D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS</title><source>esp@cenet</source><creator>VARMA, Arnav ; ZONOOZ, Bahram ; CHAWLA, Hemang ; ARANI, Elahe</creator><creatorcontrib>VARMA, Arnav ; ZONOOZ, Bahram ; CHAWLA, Hemang ; ARANI, Elahe</creatorcontrib><description>A method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to enforce the scale-consistency and/or -awareness on the monocular self-supervised ego-motion and depth estimation. A relative weight assigned to the GPS to scale loss exponentially increases as training progresses. The depth and ego-motion prediction neural networks are trained using an appearance-based photometric loss between real and synthesized target images, as well as a smoothness loss on the depth predictions.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240821&DB=EPODOC&CC=EP&NR=4002215B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240821&DB=EPODOC&CC=EP&NR=4002215B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VARMA, Arnav</creatorcontrib><creatorcontrib>ZONOOZ, Bahram</creatorcontrib><creatorcontrib>CHAWLA, Hemang</creatorcontrib><creatorcontrib>ARANI, Elahe</creatorcontrib><title>METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS</title><description>A method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to enforce the scale-consistency and/or -awareness on the monocular self-supervised ego-motion and depth estimation. A relative weight assigned to the GPS to scale loss exponentially increases as training progresses. The depth and ego-motion prediction neural networks are trained using an appearance-based photometric loss between real and synthesized target images, as well as a smoothness loss on the depth predictions.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi00OgjAQRtm4MOod5gJEQD1AbQdpLJ2mUyCuCDF1ZZQED-Gx_YkHcPW-5H1vnjxrDBUpCAS6dp5aBJbCIEiyrDmglScQVq3J_4TohEeLzKAtCKhJoQEqgdGUKTcOfasZFSh0ofqkgAdKawqaLDiPSsvvtNh4Yd4IHfkjL5PZZbhOcfXjIoESg6zSON77OI3DOd7io0e3zbKiyHf7fPPH5QW45j3D</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>VARMA, Arnav</creator><creator>ZONOOZ, Bahram</creator><creator>CHAWLA, Hemang</creator><creator>ARANI, Elahe</creator><scope>EVB</scope></search><sort><creationdate>20240821</creationdate><title>METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS</title><author>VARMA, Arnav ; ZONOOZ, Bahram ; CHAWLA, Hemang ; ARANI, Elahe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4002215B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>VARMA, Arnav</creatorcontrib><creatorcontrib>ZONOOZ, Bahram</creatorcontrib><creatorcontrib>CHAWLA, Hemang</creatorcontrib><creatorcontrib>ARANI, Elahe</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VARMA, Arnav</au><au>ZONOOZ, Bahram</au><au>CHAWLA, Hemang</au><au>ARANI, Elahe</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS</title><date>2024-08-21</date><risdate>2024</risdate><abstract>A method to improve scale consistency and/or scale awareness in a model of self-supervised depth and ego-motion prediction neural networks processing a video stream of monocular images, wherein complementary GPS coordinates synchronized with the images are used to calculate a GPS to scale loss to enforce the scale-consistency and/or -awareness on the monocular self-supervised ego-motion and depth estimation. A relative weight assigned to the GPS to scale loss exponentially increases as training progresses. The depth and ego-motion prediction neural networks are trained using an appearance-based photometric loss between real and synthesized target images, as well as a smoothness loss on the depth predictions.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4002215B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | METHOD TO IMPROVE SCALE CONSISTENCY AND/OR SCALE AWARENESS IN A MODEL OF SELF-SUPERVISED DEPTH AND EGO-MOTION PREDICTION NEURAL NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VARMA,%20Arnav&rft.date=2024-08-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4002215B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |