A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK
A system for bias estimation in Artificial Intelligence (Al) models using a pre-trained unsupervised deep neural network, comprising a bias vector generator implemented by at least one processor that executes an unsupervised DNN with a predetermined loss function. The bias vector generator is adapte...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ELOVICI, Yuval FISCHER, Sebastian BRODT, Oleg FROMM, Ronald GROLMAN, Edita SHABTAI, Asaf HACMON, Amit |
description | A system for bias estimation in Artificial Intelligence (Al) models using a pre-trained unsupervised deep neural network, comprising a bias vector generator implemented by at least one processor that executes an unsupervised DNN with a predetermined loss function. The bias vector generator is adapted to store a given ML model to be examined, with predetermined features; store a test-set of one or more test data samples being input data samples; receive a feature vector consisting of one or more input samples; output a bias vector indicating the degree of bias for each feature, according to said one or more input samples. The system also comprises a post-processor which is adapted to receive a set of bias vectors generated by said bias vector generator; process said bias vectors; calculate a bias estimation for every feature of said ML model, based on predictions of said ML model; provide a final bias estimation for each examined feature. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3968239A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3968239A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3968239A13</originalsourceid><addsrcrecordid>eNqNyj0KwkAQQOE0FqLeYUotLDQgphyzs8ng_oTdCWIVgqyFiAbi_TGFB7B6PPjm2QMhXqOQBXQKECxJ7RVoH-DEGIGisEVh74AdYBDWXDKa6YSM4YpcSbBG3oD1ikyENrKrQBE14KgNE3UkFx_Oy2x2759jWv26yECTlPU2De8ujUN_S6_06ajJi8Nxnxe4y_8gX67ONR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK</title><source>esp@cenet</source><creator>ELOVICI, Yuval ; FISCHER, Sebastian ; BRODT, Oleg ; FROMM, Ronald ; GROLMAN, Edita ; SHABTAI, Asaf ; HACMON, Amit</creator><creatorcontrib>ELOVICI, Yuval ; FISCHER, Sebastian ; BRODT, Oleg ; FROMM, Ronald ; GROLMAN, Edita ; SHABTAI, Asaf ; HACMON, Amit</creatorcontrib><description>A system for bias estimation in Artificial Intelligence (Al) models using a pre-trained unsupervised deep neural network, comprising a bias vector generator implemented by at least one processor that executes an unsupervised DNN with a predetermined loss function. The bias vector generator is adapted to store a given ML model to be examined, with predetermined features; store a test-set of one or more test data samples being input data samples; receive a feature vector consisting of one or more input samples; output a bias vector indicating the degree of bias for each feature, according to said one or more input samples. The system also comprises a post-processor which is adapted to receive a set of bias vectors generated by said bias vector generator; process said bias vectors; calculate a bias estimation for every feature of said ML model, based on predictions of said ML model; provide a final bias estimation for each examined feature.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220316&DB=EPODOC&CC=EP&NR=3968239A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220316&DB=EPODOC&CC=EP&NR=3968239A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ELOVICI, Yuval</creatorcontrib><creatorcontrib>FISCHER, Sebastian</creatorcontrib><creatorcontrib>BRODT, Oleg</creatorcontrib><creatorcontrib>FROMM, Ronald</creatorcontrib><creatorcontrib>GROLMAN, Edita</creatorcontrib><creatorcontrib>SHABTAI, Asaf</creatorcontrib><creatorcontrib>HACMON, Amit</creatorcontrib><title>A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK</title><description>A system for bias estimation in Artificial Intelligence (Al) models using a pre-trained unsupervised deep neural network, comprising a bias vector generator implemented by at least one processor that executes an unsupervised DNN with a predetermined loss function. The bias vector generator is adapted to store a given ML model to be examined, with predetermined features; store a test-set of one or more test data samples being input data samples; receive a feature vector consisting of one or more input samples; output a bias vector indicating the degree of bias for each feature, according to said one or more input samples. The system also comprises a post-processor which is adapted to receive a set of bias vectors generated by said bias vector generator; process said bias vectors; calculate a bias estimation for every feature of said ML model, based on predictions of said ML model; provide a final bias estimation for each examined feature.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQQOE0FqLeYUotLDQgphyzs8ng_oTdCWIVgqyFiAbi_TGFB7B6PPjm2QMhXqOQBXQKECxJ7RVoH-DEGIGisEVh74AdYBDWXDKa6YSM4YpcSbBG3oD1ikyENrKrQBE14KgNE3UkFx_Oy2x2759jWv26yECTlPU2De8ujUN_S6_06ajJi8Nxnxe4y_8gX67ONR0</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>ELOVICI, Yuval</creator><creator>FISCHER, Sebastian</creator><creator>BRODT, Oleg</creator><creator>FROMM, Ronald</creator><creator>GROLMAN, Edita</creator><creator>SHABTAI, Asaf</creator><creator>HACMON, Amit</creator><scope>EVB</scope></search><sort><creationdate>20220316</creationdate><title>A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK</title><author>ELOVICI, Yuval ; FISCHER, Sebastian ; BRODT, Oleg ; FROMM, Ronald ; GROLMAN, Edita ; SHABTAI, Asaf ; HACMON, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3968239A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ELOVICI, Yuval</creatorcontrib><creatorcontrib>FISCHER, Sebastian</creatorcontrib><creatorcontrib>BRODT, Oleg</creatorcontrib><creatorcontrib>FROMM, Ronald</creatorcontrib><creatorcontrib>GROLMAN, Edita</creatorcontrib><creatorcontrib>SHABTAI, Asaf</creatorcontrib><creatorcontrib>HACMON, Amit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ELOVICI, Yuval</au><au>FISCHER, Sebastian</au><au>BRODT, Oleg</au><au>FROMM, Ronald</au><au>GROLMAN, Edita</au><au>SHABTAI, Asaf</au><au>HACMON, Amit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK</title><date>2022-03-16</date><risdate>2022</risdate><abstract>A system for bias estimation in Artificial Intelligence (Al) models using a pre-trained unsupervised deep neural network, comprising a bias vector generator implemented by at least one processor that executes an unsupervised DNN with a predetermined loss function. The bias vector generator is adapted to store a given ML model to be examined, with predetermined features; store a test-set of one or more test data samples being input data samples; receive a feature vector consisting of one or more input samples; output a bias vector indicating the degree of bias for each feature, according to said one or more input samples. The system also comprises a post-processor which is adapted to receive a set of bias vectors generated by said bias vector generator; process said bias vectors; calculate a bias estimation for every feature of said ML model, based on predictions of said ML model; provide a final bias estimation for each examined feature.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3968239A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | A SYSTEM AND A METHOD FOR BIAS ESTIMATION IN ARTIFICIAL INTELLIGENCE (AI) MODELS USING DEEP NEURAL NETWORK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ELOVICI,%20Yuval&rft.date=2022-03-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3968239A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |