LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME
An anode assembly for use in a lithium-based battery may include a current collector comprising aluminum, at least a first protective layer bonded to and covering a portion of the collector and being formed from a protective metal that is electrically conductive, and at least a first reactive layer...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | JOHNSTON, Timothy George JASTRZEBSKI, Maciej |
description | An anode assembly for use in a lithium-based battery may include a current collector comprising aluminum, at least a first protective layer bonded to and covering a portion of the collector and being formed from a protective metal that is electrically conductive, and at least a first reactive layer comprising lithium metal bonded to the protective. The first protective layer can be disposed between the support surface and the reactive layer so that electrons can travel from the first reactive layer to the current collector and the first reactive layer is spaced from and at least substantially ionically isolated from the support surface, and whereby diffusion of the reactive layer to the current collector is substantially prevented, by the first protective layer thereby inhibiting reactions between the lithium metal and the current collector. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3956937A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3956937A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3956937A13</originalsourceid><addsrcrecordid>eNrjZPD08Qzx8Az1VfB1DXH0UXD083dxVXAMDnb1dfLxdA0GCrgAsYJjQIBjkGNIKEQAqNbD30XB303B19Hb089dIdjR15WHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhhbmppZGps7GhoToQQAnnAsQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME</title><source>esp@cenet</source><creator>JOHNSTON, Timothy George ; JASTRZEBSKI, Maciej</creator><creatorcontrib>JOHNSTON, Timothy George ; JASTRZEBSKI, Maciej</creatorcontrib><description>An anode assembly for use in a lithium-based battery may include a current collector comprising aluminum, at least a first protective layer bonded to and covering a portion of the collector and being formed from a protective metal that is electrically conductive, and at least a first reactive layer comprising lithium metal bonded to the protective. The first protective layer can be disposed between the support surface and the reactive layer so that electrons can travel from the first reactive layer to the current collector and the first reactive layer is spaced from and at least substantially ionically isolated from the support surface, and whereby diffusion of the reactive layer to the current collector is substantially prevented, by the first protective layer thereby inhibiting reactions between the lithium metal and the current collector.</description><language>eng ; fre ; ger</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220223&DB=EPODOC&CC=EP&NR=3956937A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220223&DB=EPODOC&CC=EP&NR=3956937A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JOHNSTON, Timothy George</creatorcontrib><creatorcontrib>JASTRZEBSKI, Maciej</creatorcontrib><title>LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME</title><description>An anode assembly for use in a lithium-based battery may include a current collector comprising aluminum, at least a first protective layer bonded to and covering a portion of the collector and being formed from a protective metal that is electrically conductive, and at least a first reactive layer comprising lithium metal bonded to the protective. The first protective layer can be disposed between the support surface and the reactive layer so that electrons can travel from the first reactive layer to the current collector and the first reactive layer is spaced from and at least substantially ionically isolated from the support surface, and whereby diffusion of the reactive layer to the current collector is substantially prevented, by the first protective layer thereby inhibiting reactions between the lithium metal and the current collector.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD08Qzx8Az1VfB1DXH0UXD083dxVXAMDnb1dfLxdA0GCrgAsYJjQIBjkGNIKEQAqNbD30XB303B19Hb089dIdjR15WHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhhbmppZGps7GhoToQQAnnAsQw</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>JOHNSTON, Timothy George</creator><creator>JASTRZEBSKI, Maciej</creator><scope>EVB</scope></search><sort><creationdate>20220223</creationdate><title>LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME</title><author>JOHNSTON, Timothy George ; JASTRZEBSKI, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3956937A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>JOHNSTON, Timothy George</creatorcontrib><creatorcontrib>JASTRZEBSKI, Maciej</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JOHNSTON, Timothy George</au><au>JASTRZEBSKI, Maciej</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME</title><date>2022-02-23</date><risdate>2022</risdate><abstract>An anode assembly for use in a lithium-based battery may include a current collector comprising aluminum, at least a first protective layer bonded to and covering a portion of the collector and being formed from a protective metal that is electrically conductive, and at least a first reactive layer comprising lithium metal bonded to the protective. The first protective layer can be disposed between the support surface and the reactive layer so that electrons can travel from the first reactive layer to the current collector and the first reactive layer is spaced from and at least substantially ionically isolated from the support surface, and whereby diffusion of the reactive layer to the current collector is substantially prevented, by the first protective layer thereby inhibiting reactions between the lithium metal and the current collector.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3956937A1 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | LITHIUM METAL ANODE ASSEMBLIES AND AN APPARATUS AND METHOD OF MAKING SAME |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JOHNSTON,%20Timothy%20George&rft.date=2022-02-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3956937A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |