USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION

Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Franken, Erik Michiel, Flanagan, John J, Peemen, Maurice
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Franken, Erik Michiel
Flanagan, John J
Peemen, Maurice
description Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3937070A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3937070A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3937070A13</originalsourceid><addsrcrecordid>eNrjZPAPDfb0c1dw9vcL8_cJDfH091Pwcw0NcvQBUiHh_kHewQpu_kEK_n66IR6uum4-kQog9T6uCgGOQSGezkBGkCtQc3BIUKgzSDcPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTC2NDY3MDdwNDQmQgkAOT4vBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><source>esp@cenet</source><creator>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</creator><creatorcontrib>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</creatorcontrib><description>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220112&amp;DB=EPODOC&amp;CC=EP&amp;NR=3937070A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220112&amp;DB=EPODOC&amp;CC=EP&amp;NR=3937070A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Franken, Erik Michiel</creatorcontrib><creatorcontrib>Flanagan, John J</creatorcontrib><creatorcontrib>Peemen, Maurice</creatorcontrib><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><description>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAPDfb0c1dw9vcL8_cJDfH091Pwcw0NcvQBUiHh_kHewQpu_kEK_n66IR6uum4-kQog9T6uCgGOQSGezkBGkCtQc3BIUKgzSDcPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTC2NDY3MDdwNDQmQgkAOT4vBA</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Franken, Erik Michiel</creator><creator>Flanagan, John J</creator><creator>Peemen, Maurice</creator><scope>EVB</scope></search><sort><creationdate>20220112</creationdate><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><author>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3937070A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Franken, Erik Michiel</creatorcontrib><creatorcontrib>Flanagan, John J</creatorcontrib><creatorcontrib>Peemen, Maurice</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franken, Erik Michiel</au><au>Flanagan, John J</au><au>Peemen, Maurice</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><date>2022-01-12</date><risdate>2022</risdate><abstract>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3937070A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Franken,%20Erik%20Michiel&rft.date=2022-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3937070A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true