USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION
Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Franken, Erik Michiel Flanagan, John J Peemen, Maurice |
description | Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3937070A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3937070A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3937070A13</originalsourceid><addsrcrecordid>eNrjZPAPDfb0c1dw9vcL8_cJDfH091Pwcw0NcvQBUiHh_kHewQpu_kEK_n66IR6uum4-kQog9T6uCgGOQSGezkBGkCtQc3BIUKgzSDcPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTC2NDY3MDdwNDQmQgkAOT4vBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><source>esp@cenet</source><creator>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</creator><creatorcontrib>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</creatorcontrib><description>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220112&DB=EPODOC&CC=EP&NR=3937070A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220112&DB=EPODOC&CC=EP&NR=3937070A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Franken, Erik Michiel</creatorcontrib><creatorcontrib>Flanagan, John J</creatorcontrib><creatorcontrib>Peemen, Maurice</creatorcontrib><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><description>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAPDfb0c1dw9vcL8_cJDfH091Pwcw0NcvQBUiHh_kHewQpu_kEK_n66IR6uum4-kQog9T6uCgGOQSGezkBGkCtQc3BIUKgzSDcPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTC2NDY3MDdwNDQmQgkAOT4vBA</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Franken, Erik Michiel</creator><creator>Flanagan, John J</creator><creator>Peemen, Maurice</creator><scope>EVB</scope></search><sort><creationdate>20220112</creationdate><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><author>Franken, Erik Michiel ; Flanagan, John J ; Peemen, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3937070A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Franken, Erik Michiel</creatorcontrib><creatorcontrib>Flanagan, John J</creatorcontrib><creatorcontrib>Peemen, Maurice</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franken, Erik Michiel</au><au>Flanagan, John J</au><au>Peemen, Maurice</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION</title><date>2022-01-12</date><risdate>2022</risdate><abstract>Convolutional neural networks (CNNs) of a set of CNNs are evaluated using a test set of images (electron micrographs) associated with a selected particle type. A preferred CNN is selected based on the evaluation and used for processing electron micrographs of test samples. The test set of images can be obtained by manual selection or generated using a model of the selected particle type. Upon selection of images using the preferred CNN in processing additional electron micrographs, the selected images can be added to a training set or used as an additional training set to retrain the preferred CNN. In some examples, only selected layers of the preferred CNN are retrained. In other examples, two dimensional projections of based on particles of similar structure are used for CNN training or retraining.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3937070A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | USING CONVOLUTION NEURAL NETWORKS FOR ON-THE-FLY SINGLE PARTICLE RECONSTRUCTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Franken,%20Erik%20Michiel&rft.date=2022-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3937070A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |