DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES

Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RAGHAVENDRA, Ramya, WILSON, Arlynn W, LYON, Jeremy, NYEMBE, Armand Nokbak, BARRETT, Robert
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RAGHAVENDRA, Ramya
WILSON, Arlynn W
LYON, Jeremy
NYEMBE, Armand Nokbak
BARRETT, Robert
description Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3932014A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3932014A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3932014A13</originalsourceid><addsrcrecordid>eNrjZHB2ifRz9PV0VggOdQp2DvJ0cg1S8HMNCfcP8lYI8IgM9nR29FHw9A1w9AzydfULUXBxDXF1DvH091MA0h5-noGhrsE8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDY0tjIwNDE0dCYCCUAEhsrjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES</title><source>esp@cenet</source><creator>RAGHAVENDRA, Ramya ; WILSON, Arlynn W ; LYON, Jeremy ; NYEMBE, Armand Nokbak ; BARRETT, Robert</creator><creatorcontrib>RAGHAVENDRA, Ramya ; WILSON, Arlynn W ; LYON, Jeremy ; NYEMBE, Armand Nokbak ; BARRETT, Robert</creatorcontrib><description>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</description><language>eng ; fre ; ger</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220105&amp;DB=EPODOC&amp;CC=EP&amp;NR=3932014A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220105&amp;DB=EPODOC&amp;CC=EP&amp;NR=3932014A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RAGHAVENDRA, Ramya</creatorcontrib><creatorcontrib>WILSON, Arlynn W</creatorcontrib><creatorcontrib>LYON, Jeremy</creatorcontrib><creatorcontrib>NYEMBE, Armand Nokbak</creatorcontrib><creatorcontrib>BARRETT, Robert</creatorcontrib><title>DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES</title><description>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2ifRz9PV0VggOdQp2DvJ0cg1S8HMNCfcP8lYI8IgM9nR29FHw9A1w9AzydfULUXBxDXF1DvH091MA0h5-noGhrsE8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDY0tjIwNDE0dCYCCUAEhsrjA</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>RAGHAVENDRA, Ramya</creator><creator>WILSON, Arlynn W</creator><creator>LYON, Jeremy</creator><creator>NYEMBE, Armand Nokbak</creator><creator>BARRETT, Robert</creator><scope>EVB</scope></search><sort><creationdate>20220105</creationdate><title>DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES</title><author>RAGHAVENDRA, Ramya ; WILSON, Arlynn W ; LYON, Jeremy ; NYEMBE, Armand Nokbak ; BARRETT, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3932014A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>RAGHAVENDRA, Ramya</creatorcontrib><creatorcontrib>WILSON, Arlynn W</creatorcontrib><creatorcontrib>LYON, Jeremy</creatorcontrib><creatorcontrib>NYEMBE, Armand Nokbak</creatorcontrib><creatorcontrib>BARRETT, Robert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RAGHAVENDRA, Ramya</au><au>WILSON, Arlynn W</au><au>LYON, Jeremy</au><au>NYEMBE, Armand Nokbak</au><au>BARRETT, Robert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES</title><date>2022-01-05</date><risdate>2022</risdate><abstract>Systems and techniques are disclosed for using machine learning to dynamically detect physical impairments in lines of a subscriber network. In some implementations, per-tone data for a line of a subscriber network and data indicating a set of one or more scores is obtained. Each score included in the set of scores indicates a conditional likelihood that the line has a type of impairment with respect to a different feature subset ensemble. The per-tone data and the data indicating the set of one or more scores is provided as input to a model. The model is trained to output, for each of different sets of feature subset ensembles, a confidence score representing an overall likelihood that a particular line has a physical impairment. Data indicating a particular confidence score representing an overall likelihood that the line has the physical impairment is obtained. The particular confidence score is provided for output.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3932014A1
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title DYNAMIC SUBSCRIBER NETWORK PHYSICAL IMPAIRMENT DETECTION TECHNIQUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RAGHAVENDRA,%20Ramya&rft.date=2022-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3932014A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true