ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR
A computer-implemented technique generates a dense embedding vector that provides a distributed representation of input text. The technique includes: generating an input term-frequency (TF) vector of dimension g that includes frequency information relating to frequency of occurrence of terms in an i...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ULABALA, Surendra WANG, Yan WU, Ye SACHETI, Arun THAKKAR, Vishal HU, Houdong |
description | A computer-implemented technique generates a dense embedding vector that provides a distributed representation of input text. The technique includes: generating an input term-frequency (TF) vector of dimension g that includes frequency information relating to frequency of occurrence of terms in an instance of input text; using a TF-modifying component to modify the term-specific frequency information in the input TF vector by respective machine-trained weighting factors, to produce an intermediate vector of dimension g; using a projection component to project the intermediate vector of dimension g into an embedding vector of dimension k, where k is less than g. Both the TF-modifying component and the projection component use respective machine-trained neural networks. An application performs any of a retrieval-based function, a recognition-based function, a recommendation-based function, a classification-based function, etc. based on the embedding vector. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3928220A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3928220A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3928220A13</originalsourceid><addsrcrecordid>eNqNyjEOgjAUBmAWB6Pe4V2ARMuiY21_aAcKtq8YJ0JMnYyS4P0jJB7A6Vu-dZbgVKPhKQbrKqqlMtYhZy9nNDF8TaXHJc7vRlfYyvASS6m48YHYSKbWNzoqBJKk4QII9RlaL6_D8rbZ6jE8p7T7ucmoBCuTp_Hdp2kc7umVPj3a4iSOQuzlofijfAEXNzRR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR</title><source>esp@cenet</source><creator>ULABALA, Surendra ; WANG, Yan ; WU, Ye ; SACHETI, Arun ; THAKKAR, Vishal ; HU, Houdong</creator><creatorcontrib>ULABALA, Surendra ; WANG, Yan ; WU, Ye ; SACHETI, Arun ; THAKKAR, Vishal ; HU, Houdong</creatorcontrib><description>A computer-implemented technique generates a dense embedding vector that provides a distributed representation of input text. The technique includes: generating an input term-frequency (TF) vector of dimension g that includes frequency information relating to frequency of occurrence of terms in an instance of input text; using a TF-modifying component to modify the term-specific frequency information in the input TF vector by respective machine-trained weighting factors, to produce an intermediate vector of dimension g; using a projection component to project the intermediate vector of dimension g into an embedding vector of dimension k, where k is less than g. Both the TF-modifying component and the projection component use respective machine-trained neural networks. An application performs any of a retrieval-based function, a recognition-based function, a recommendation-based function, a classification-based function, etc. based on the embedding vector.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211229&DB=EPODOC&CC=EP&NR=3928220A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211229&DB=EPODOC&CC=EP&NR=3928220A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ULABALA, Surendra</creatorcontrib><creatorcontrib>WANG, Yan</creatorcontrib><creatorcontrib>WU, Ye</creatorcontrib><creatorcontrib>SACHETI, Arun</creatorcontrib><creatorcontrib>THAKKAR, Vishal</creatorcontrib><creatorcontrib>HU, Houdong</creatorcontrib><title>ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR</title><description>A computer-implemented technique generates a dense embedding vector that provides a distributed representation of input text. The technique includes: generating an input term-frequency (TF) vector of dimension g that includes frequency information relating to frequency of occurrence of terms in an instance of input text; using a TF-modifying component to modify the term-specific frequency information in the input TF vector by respective machine-trained weighting factors, to produce an intermediate vector of dimension g; using a projection component to project the intermediate vector of dimension g into an embedding vector of dimension k, where k is less than g. Both the TF-modifying component and the projection component use respective machine-trained neural networks. An application performs any of a retrieval-based function, a recognition-based function, a recommendation-based function, a classification-based function, etc. based on the embedding vector.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOgjAUBmAWB6Pe4V2ARMuiY21_aAcKtq8YJ0JMnYyS4P0jJB7A6Vu-dZbgVKPhKQbrKqqlMtYhZy9nNDF8TaXHJc7vRlfYyvASS6m48YHYSKbWNzoqBJKk4QII9RlaL6_D8rbZ6jE8p7T7ucmoBCuTp_Hdp2kc7umVPj3a4iSOQuzlofijfAEXNzRR</recordid><startdate>20211229</startdate><enddate>20211229</enddate><creator>ULABALA, Surendra</creator><creator>WANG, Yan</creator><creator>WU, Ye</creator><creator>SACHETI, Arun</creator><creator>THAKKAR, Vishal</creator><creator>HU, Houdong</creator><scope>EVB</scope></search><sort><creationdate>20211229</creationdate><title>ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR</title><author>ULABALA, Surendra ; WANG, Yan ; WU, Ye ; SACHETI, Arun ; THAKKAR, Vishal ; HU, Houdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3928220A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ULABALA, Surendra</creatorcontrib><creatorcontrib>WANG, Yan</creatorcontrib><creatorcontrib>WU, Ye</creatorcontrib><creatorcontrib>SACHETI, Arun</creatorcontrib><creatorcontrib>THAKKAR, Vishal</creatorcontrib><creatorcontrib>HU, Houdong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ULABALA, Surendra</au><au>WANG, Yan</au><au>WU, Ye</au><au>SACHETI, Arun</au><au>THAKKAR, Vishal</au><au>HU, Houdong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR</title><date>2021-12-29</date><risdate>2021</risdate><abstract>A computer-implemented technique generates a dense embedding vector that provides a distributed representation of input text. The technique includes: generating an input term-frequency (TF) vector of dimension g that includes frequency information relating to frequency of occurrence of terms in an instance of input text; using a TF-modifying component to modify the term-specific frequency information in the input TF vector by respective machine-trained weighting factors, to produce an intermediate vector of dimension g; using a projection component to project the intermediate vector of dimension g into an embedding vector of dimension k, where k is less than g. Both the TF-modifying component and the projection component use respective machine-trained neural networks. An application performs any of a retrieval-based function, a recognition-based function, a recommendation-based function, a classification-based function, etc. based on the embedding vector.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3928220A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | ENCODER USING MACHINE-TRAINED TERM FREQUENCY WEIGHTING FACTORS THAT PRODUCES A DENSE EMBEDDING VECTOR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ULABALA,%20Surendra&rft.date=2021-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3928220A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |