MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION
A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partial...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU, Kuang-Hung DENLI, Huseyin |
description | A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partially training a model autoencoder with the prior subsurface data to learn a fraction of model space representations and generate a model space decoder; (c) forming an augmented forward model with the model space decoder, the data space encoder, and a physics-based forward model; (d) solving an inversion problem with the augmented forward model to generate an inversion solution; and iteratively repeating (a)-(d) until convergence of the inversion solution, wherein, for each iteration: partially training the data and model autoencoders starts with learned weights from an immediately-previous iteration; and solving the inversion problem starts with super parameters from the previous iteration. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3894907A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3894907A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3894907A13</originalsourceid><addsrcrecordid>eNrjZDDwdXT28PRzVfBxdQzy8_Rz13UMdfd19QtxdVFwd_UP8IgM9nR29FHw9AtzDQr29PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGFpYmlgbmjobGRCgBAPg2JjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION</title><source>esp@cenet</source><creator>LIU, Kuang-Hung ; DENLI, Huseyin</creator><creatorcontrib>LIU, Kuang-Hung ; DENLI, Huseyin</creatorcontrib><description>A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partially training a model autoencoder with the prior subsurface data to learn a fraction of model space representations and generate a model space decoder; (c) forming an augmented forward model with the model space decoder, the data space encoder, and a physics-based forward model; (d) solving an inversion problem with the augmented forward model to generate an inversion solution; and iteratively repeating (a)-(d) until convergence of the inversion solution, wherein, for each iteration: partially training the data and model autoencoders starts with learned weights from an immediately-previous iteration; and solving the inversion problem starts with super parameters from the previous iteration.</description><language>eng ; fre ; ger</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211020&DB=EPODOC&CC=EP&NR=3894907A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211020&DB=EPODOC&CC=EP&NR=3894907A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU, Kuang-Hung</creatorcontrib><creatorcontrib>DENLI, Huseyin</creatorcontrib><title>MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION</title><description>A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partially training a model autoencoder with the prior subsurface data to learn a fraction of model space representations and generate a model space decoder; (c) forming an augmented forward model with the model space decoder, the data space encoder, and a physics-based forward model; (d) solving an inversion problem with the augmented forward model to generate an inversion solution; and iteratively repeating (a)-(d) until convergence of the inversion solution, wherein, for each iteration: partially training the data and model autoencoders starts with learned weights from an immediately-previous iteration; and solving the inversion problem starts with super parameters from the previous iteration.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDwdXT28PRzVfBxdQzy8_Rz13UMdfd19QtxdVFwd_UP8IgM9nR29FHw9AtzDQr29PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGFpYmlgbmjobGRCgBAPg2JjA</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>LIU, Kuang-Hung</creator><creator>DENLI, Huseyin</creator><scope>EVB</scope></search><sort><creationdate>20211020</creationdate><title>MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION</title><author>LIU, Kuang-Hung ; DENLI, Huseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3894907A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU, Kuang-Hung</creatorcontrib><creatorcontrib>DENLI, Huseyin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU, Kuang-Hung</au><au>DENLI, Huseyin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION</title><date>2021-10-20</date><risdate>2021</risdate><abstract>A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partially training a model autoencoder with the prior subsurface data to learn a fraction of model space representations and generate a model space decoder; (c) forming an augmented forward model with the model space decoder, the data space encoder, and a physics-based forward model; (d) solving an inversion problem with the augmented forward model to generate an inversion solution; and iteratively repeating (a)-(d) until convergence of the inversion solution, wherein, for each iteration: partially training the data and model autoencoders starts with learned weights from an immediately-previous iteration; and solving the inversion problem starts with super parameters from the previous iteration.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3894907A1 |
source | esp@cenet |
subjects | DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU,%20Kuang-Hung&rft.date=2021-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3894907A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |