PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES

There is a process for the selective recovery of transition metals from an organic stream containing transition metals. The organic stream and possibly a first extractor if solid, are melted up to the liquid state. The extractor consists of an ionic liquid or a mixture of two or more ionic liquids a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUIDETTI, Stefania, DE ANGELIS, Alberto Renato
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUIDETTI, Stefania
DE ANGELIS, Alberto Renato
description There is a process for the selective recovery of transition metals from an organic stream containing transition metals. The organic stream and possibly a first extractor if solid, are melted up to the liquid state. The extractor consists of an ionic liquid or a mixture of two or more ionic liquids and the ionic liquid contains an ammonium salt as cation and as anion an anion with chelating properties. A melted organic stream and a first extractor, optionally melted, are fed to a first liquid-liquid extraction unit working at a temperature of at least 150° C. where the liquid-liquid extraction is carried out obtaining a liquid mixture containing an ionic liquid, or a mixture of two or more ionic liquids, and metals. After extraction, the liquid mixture is cooled at a temperature between 0° C. and 70° C. and becomes biphasic; then the cooled mixture is sent to a first separation unit, to separate a liquid phase that contains ionic liquids and metals, and a metal-depleted solid phase. After the first separation, the separated metal-depleted solid phase is optionally sent to a washing unit to which a solvent is fed, so as to eliminate the residual ionic liquid by transferring it into the solvent and obtaining a metal-depleted solid phase. Then the separate liquid phase containing ionic liquids and metals is sent into a liquid-liquid precipitation and separation unit, adding a counter-solvent, thereby obtaining a solid phase containing the metals and a liquid stream containing counter-solvent and ionic liquids.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3894037B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3894037B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3894037B13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w_2AoERQxxgvNtDkyt1ZcCpF4iRaqP-PHfwAp7e8uUkNk0cRCMSgFYJgjV5ji8DoqUW-AQVQdlmiRsqQUF09faYExBeXo5-qxPMVZWlmj_45ltXPhYGA6qt1Gd5dGYf-Xl7l02FjD8fdxu5PW_tH-QKryy4d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES</title><source>esp@cenet</source><creator>GUIDETTI, Stefania ; DE ANGELIS, Alberto Renato</creator><creatorcontrib>GUIDETTI, Stefania ; DE ANGELIS, Alberto Renato</creatorcontrib><description>There is a process for the selective recovery of transition metals from an organic stream containing transition metals. The organic stream and possibly a first extractor if solid, are melted up to the liquid state. The extractor consists of an ionic liquid or a mixture of two or more ionic liquids and the ionic liquid contains an ammonium salt as cation and as anion an anion with chelating properties. A melted organic stream and a first extractor, optionally melted, are fed to a first liquid-liquid extraction unit working at a temperature of at least 150° C. where the liquid-liquid extraction is carried out obtaining a liquid mixture containing an ionic liquid, or a mixture of two or more ionic liquids, and metals. After extraction, the liquid mixture is cooled at a temperature between 0° C. and 70° C. and becomes biphasic; then the cooled mixture is sent to a first separation unit, to separate a liquid phase that contains ionic liquids and metals, and a metal-depleted solid phase. After the first separation, the separated metal-depleted solid phase is optionally sent to a washing unit to which a solvent is fed, so as to eliminate the residual ionic liquid by transferring it into the solvent and obtaining a metal-depleted solid phase. Then the separate liquid phase containing ionic liquids and metals is sent into a liquid-liquid precipitation and separation unit, adding a counter-solvent, thereby obtaining a solid phase containing the metals and a liquid stream containing counter-solvent and ionic liquids.</description><language>eng ; fre ; ger</language><subject>CHEMISTRY ; CRACKING HYDROCARBON OILS ; FERROUS OR NON-FERROUS ALLOYS ; FUELS ; LUBRICANTS ; METALLURGY ; MINERAL WAXES ; PEAT ; PERFORMING OPERATIONS ; PETROLEUM, GAS OR COKE INDUSTRIES ; PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL ; PRETREATMENT OF RAW MATERIALS ; PRODUCTION AND REFINING OF METALS ; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION ; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES ; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS ; REFORMING OF NAPHTHA ; SEPARATION ; TECHNICAL GASES CONTAINING CARBON MONOXIDE ; TRANSPORTING ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240724&amp;DB=EPODOC&amp;CC=EP&amp;NR=3894037B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240724&amp;DB=EPODOC&amp;CC=EP&amp;NR=3894037B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUIDETTI, Stefania</creatorcontrib><creatorcontrib>DE ANGELIS, Alberto Renato</creatorcontrib><title>PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES</title><description>There is a process for the selective recovery of transition metals from an organic stream containing transition metals. The organic stream and possibly a first extractor if solid, are melted up to the liquid state. The extractor consists of an ionic liquid or a mixture of two or more ionic liquids and the ionic liquid contains an ammonium salt as cation and as anion an anion with chelating properties. A melted organic stream and a first extractor, optionally melted, are fed to a first liquid-liquid extraction unit working at a temperature of at least 150° C. where the liquid-liquid extraction is carried out obtaining a liquid mixture containing an ionic liquid, or a mixture of two or more ionic liquids, and metals. After extraction, the liquid mixture is cooled at a temperature between 0° C. and 70° C. and becomes biphasic; then the cooled mixture is sent to a first separation unit, to separate a liquid phase that contains ionic liquids and metals, and a metal-depleted solid phase. After the first separation, the separated metal-depleted solid phase is optionally sent to a washing unit to which a solvent is fed, so as to eliminate the residual ionic liquid by transferring it into the solvent and obtaining a metal-depleted solid phase. Then the separate liquid phase containing ionic liquids and metals is sent into a liquid-liquid precipitation and separation unit, adding a counter-solvent, thereby obtaining a solid phase containing the metals and a liquid stream containing counter-solvent and ionic liquids.</description><subject>CHEMISTRY</subject><subject>CRACKING HYDROCARBON OILS</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>FUELS</subject><subject>LUBRICANTS</subject><subject>METALLURGY</subject><subject>MINERAL WAXES</subject><subject>PEAT</subject><subject>PERFORMING OPERATIONS</subject><subject>PETROLEUM, GAS OR COKE INDUSTRIES</subject><subject>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</subject><subject>PRETREATMENT OF RAW MATERIALS</subject><subject>PRODUCTION AND REFINING OF METALS</subject><subject>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</subject><subject>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</subject><subject>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</subject><subject>REFORMING OF NAPHTHA</subject><subject>SEPARATION</subject><subject>TECHNICAL GASES CONTAINING CARBON MONOXIDE</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w_2AoERQxxgvNtDkyt1ZcCpF4iRaqP-PHfwAp7e8uUkNk0cRCMSgFYJgjV5ji8DoqUW-AQVQdlmiRsqQUF09faYExBeXo5-qxPMVZWlmj_45ltXPhYGA6qt1Gd5dGYf-Xl7l02FjD8fdxu5PW_tH-QKryy4d</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>GUIDETTI, Stefania</creator><creator>DE ANGELIS, Alberto Renato</creator><scope>EVB</scope></search><sort><creationdate>20240724</creationdate><title>PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES</title><author>GUIDETTI, Stefania ; DE ANGELIS, Alberto Renato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3894037B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>CHEMISTRY</topic><topic>CRACKING HYDROCARBON OILS</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>FUELS</topic><topic>LUBRICANTS</topic><topic>METALLURGY</topic><topic>MINERAL WAXES</topic><topic>PEAT</topic><topic>PERFORMING OPERATIONS</topic><topic>PETROLEUM, GAS OR COKE INDUSTRIES</topic><topic>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</topic><topic>PRETREATMENT OF RAW MATERIALS</topic><topic>PRODUCTION AND REFINING OF METALS</topic><topic>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</topic><topic>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</topic><topic>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</topic><topic>REFORMING OF NAPHTHA</topic><topic>SEPARATION</topic><topic>TECHNICAL GASES CONTAINING CARBON MONOXIDE</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUIDETTI, Stefania</creatorcontrib><creatorcontrib>DE ANGELIS, Alberto Renato</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUIDETTI, Stefania</au><au>DE ANGELIS, Alberto Renato</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES</title><date>2024-07-24</date><risdate>2024</risdate><abstract>There is a process for the selective recovery of transition metals from an organic stream containing transition metals. The organic stream and possibly a first extractor if solid, are melted up to the liquid state. The extractor consists of an ionic liquid or a mixture of two or more ionic liquids and the ionic liquid contains an ammonium salt as cation and as anion an anion with chelating properties. A melted organic stream and a first extractor, optionally melted, are fed to a first liquid-liquid extraction unit working at a temperature of at least 150° C. where the liquid-liquid extraction is carried out obtaining a liquid mixture containing an ionic liquid, or a mixture of two or more ionic liquids, and metals. After extraction, the liquid mixture is cooled at a temperature between 0° C. and 70° C. and becomes biphasic; then the cooled mixture is sent to a first separation unit, to separate a liquid phase that contains ionic liquids and metals, and a metal-depleted solid phase. After the first separation, the separated metal-depleted solid phase is optionally sent to a washing unit to which a solvent is fed, so as to eliminate the residual ionic liquid by transferring it into the solvent and obtaining a metal-depleted solid phase. Then the separate liquid phase containing ionic liquids and metals is sent into a liquid-liquid precipitation and separation unit, adding a counter-solvent, thereby obtaining a solid phase containing the metals and a liquid stream containing counter-solvent and ionic liquids.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3894037B1
source esp@cenet
subjects CHEMISTRY
CRACKING HYDROCARBON OILS
FERROUS OR NON-FERROUS ALLOYS
FUELS
LUBRICANTS
METALLURGY
MINERAL WAXES
PEAT
PERFORMING OPERATIONS
PETROLEUM, GAS OR COKE INDUSTRIES
PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
PRETREATMENT OF RAW MATERIALS
PRODUCTION AND REFINING OF METALS
PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION
RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES
REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS
REFORMING OF NAPHTHA
SEPARATION
TECHNICAL GASES CONTAINING CARBON MONOXIDE
TRANSPORTING
TREATMENT OF ALLOYS OR NON-FERROUS METALS
title PROCESS FOR THE SELECTIVE RECOVERY OF TRANSITION METALS FROM ORGANIC RESIDUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUIDETTI,%20Stefania&rft.date=2024-07-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3894037B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true