USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION

Embodiments generate digital plans for agricultural fields. In an embodiment, a model receives digital inputs including stress risk data, product maturity data, field location data, planting date data, and/or harvest date data. The model mathematically correlates sets of digital inputs with threshol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SSEGANE, Herbert, YANG, Xiao, XIE, Yao, SOOD, Shilpa, BULL, Jason Kendrick, EHLMANN, Tonya S, REICH, Timothy, MACISAAC, Susan Andrea, SCHNICKER, Bruce J, TRAPP, Allan, SORGE, Matthew, JACOBS, Morrison, SHAH, Nikisha
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SSEGANE, Herbert
YANG, Xiao
XIE, Yao
SOOD, Shilpa
BULL, Jason Kendrick
EHLMANN, Tonya S
REICH, Timothy
MACISAAC, Susan Andrea
SCHNICKER, Bruce J
TRAPP, Allan
SORGE, Matthew
JACOBS, Morrison
SHAH, Nikisha
description Embodiments generate digital plans for agricultural fields. In an embodiment, a model receives digital inputs including stress risk data, product maturity data, field location data, planting date data, and/or harvest date data. The model mathematically correlates sets of digital inputs with threshold data associated with the stress risk data. The model is used to generate stress risk prediction data for a set of product maturity and field location combinations. In a digital plan, product maturity data or planting date data or harvest date data or field location data can be adjusted based on the stress risk prediction data. A digital plan can be transmitted to a field manager computing device. An agricultural apparatus can be moved in response to a digital plan.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3869934A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3869934A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3869934A43</originalsourceid><addsrcrecordid>eNqNiz0KwkAQRtNYiHqHuUCqBNFy3EyShewPM7tpQ5C1Eg3Extu7ggew-R58vLct3lG07cCg6rUlGAjZ5qO8oFADQnl65JEkgHFaQmQCz9RoFbSzAsGBNp7dSICgnPExEJcokt3cYsdaxSFnOECLbMB5Yvy2-2Jzm-9rOvy4K6CloPoyLc8prct8TY_0mshXp-P5XNVYV38oH5lrOns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION</title><source>esp@cenet</source><creator>SSEGANE, Herbert ; YANG, Xiao ; XIE, Yao ; SOOD, Shilpa ; BULL, Jason Kendrick ; EHLMANN, Tonya S ; REICH, Timothy ; MACISAAC, Susan Andrea ; SCHNICKER, Bruce J ; TRAPP, Allan ; SORGE, Matthew ; JACOBS, Morrison ; SHAH, Nikisha</creator><creatorcontrib>SSEGANE, Herbert ; YANG, Xiao ; XIE, Yao ; SOOD, Shilpa ; BULL, Jason Kendrick ; EHLMANN, Tonya S ; REICH, Timothy ; MACISAAC, Susan Andrea ; SCHNICKER, Bruce J ; TRAPP, Allan ; SORGE, Matthew ; JACOBS, Morrison ; SHAH, Nikisha</creatorcontrib><description>Embodiments generate digital plans for agricultural fields. In an embodiment, a model receives digital inputs including stress risk data, product maturity data, field location data, planting date data, and/or harvest date data. The model mathematically correlates sets of digital inputs with threshold data associated with the stress risk data. The model is used to generate stress risk prediction data for a set of product maturity and field location combinations. In a digital plan, product maturity data or planting date data or harvest date data or field location data can be adjusted based on the stress risk prediction data. A digital plan can be transmitted to a field manager computing device. An agricultural apparatus can be moved in response to a digital plan.</description><language>eng ; fre ; ger</language><subject>AGRICULTURE ; ANIMAL HUSBANDRY ; CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; FERTILISING ; FISHING ; FORESTRY ; HARVESTING ; HUMAN NECESSITIES ; HUNTING ; MOWING ; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES ORIMPLEMENTS, IN GENERAL ; PHYSICS ; PLANTING ; SOIL WORKING IN AGRICULTURE OR FORESTRY ; SOWING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAPPING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220914&amp;DB=EPODOC&amp;CC=EP&amp;NR=3869934A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220914&amp;DB=EPODOC&amp;CC=EP&amp;NR=3869934A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SSEGANE, Herbert</creatorcontrib><creatorcontrib>YANG, Xiao</creatorcontrib><creatorcontrib>XIE, Yao</creatorcontrib><creatorcontrib>SOOD, Shilpa</creatorcontrib><creatorcontrib>BULL, Jason Kendrick</creatorcontrib><creatorcontrib>EHLMANN, Tonya S</creatorcontrib><creatorcontrib>REICH, Timothy</creatorcontrib><creatorcontrib>MACISAAC, Susan Andrea</creatorcontrib><creatorcontrib>SCHNICKER, Bruce J</creatorcontrib><creatorcontrib>TRAPP, Allan</creatorcontrib><creatorcontrib>SORGE, Matthew</creatorcontrib><creatorcontrib>JACOBS, Morrison</creatorcontrib><creatorcontrib>SHAH, Nikisha</creatorcontrib><title>USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION</title><description>Embodiments generate digital plans for agricultural fields. In an embodiment, a model receives digital inputs including stress risk data, product maturity data, field location data, planting date data, and/or harvest date data. The model mathematically correlates sets of digital inputs with threshold data associated with the stress risk data. The model is used to generate stress risk prediction data for a set of product maturity and field location combinations. In a digital plan, product maturity data or planting date data or harvest date data or field location data can be adjusted based on the stress risk prediction data. A digital plan can be transmitted to a field manager computing device. An agricultural apparatus can be moved in response to a digital plan.</description><subject>AGRICULTURE</subject><subject>ANIMAL HUSBANDRY</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>FERTILISING</subject><subject>FISHING</subject><subject>FORESTRY</subject><subject>HARVESTING</subject><subject>HUMAN NECESSITIES</subject><subject>HUNTING</subject><subject>MOWING</subject><subject>PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES ORIMPLEMENTS, IN GENERAL</subject><subject>PHYSICS</subject><subject>PLANTING</subject><subject>SOIL WORKING IN AGRICULTURE OR FORESTRY</subject><subject>SOWING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAPPING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiz0KwkAQRtNYiHqHuUCqBNFy3EyShewPM7tpQ5C1Eg3Extu7ggew-R58vLct3lG07cCg6rUlGAjZ5qO8oFADQnl65JEkgHFaQmQCz9RoFbSzAsGBNp7dSICgnPExEJcokt3cYsdaxSFnOECLbMB5Yvy2-2Jzm-9rOvy4K6CloPoyLc8prct8TY_0mshXp-P5XNVYV38oH5lrOns</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>SSEGANE, Herbert</creator><creator>YANG, Xiao</creator><creator>XIE, Yao</creator><creator>SOOD, Shilpa</creator><creator>BULL, Jason Kendrick</creator><creator>EHLMANN, Tonya S</creator><creator>REICH, Timothy</creator><creator>MACISAAC, Susan Andrea</creator><creator>SCHNICKER, Bruce J</creator><creator>TRAPP, Allan</creator><creator>SORGE, Matthew</creator><creator>JACOBS, Morrison</creator><creator>SHAH, Nikisha</creator><scope>EVB</scope></search><sort><creationdate>20220914</creationdate><title>USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION</title><author>SSEGANE, Herbert ; YANG, Xiao ; XIE, Yao ; SOOD, Shilpa ; BULL, Jason Kendrick ; EHLMANN, Tonya S ; REICH, Timothy ; MACISAAC, Susan Andrea ; SCHNICKER, Bruce J ; TRAPP, Allan ; SORGE, Matthew ; JACOBS, Morrison ; SHAH, Nikisha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3869934A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>AGRICULTURE</topic><topic>ANIMAL HUSBANDRY</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>FERTILISING</topic><topic>FISHING</topic><topic>FORESTRY</topic><topic>HARVESTING</topic><topic>HUMAN NECESSITIES</topic><topic>HUNTING</topic><topic>MOWING</topic><topic>PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES ORIMPLEMENTS, IN GENERAL</topic><topic>PHYSICS</topic><topic>PLANTING</topic><topic>SOIL WORKING IN AGRICULTURE OR FORESTRY</topic><topic>SOWING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAPPING</topic><toplevel>online_resources</toplevel><creatorcontrib>SSEGANE, Herbert</creatorcontrib><creatorcontrib>YANG, Xiao</creatorcontrib><creatorcontrib>XIE, Yao</creatorcontrib><creatorcontrib>SOOD, Shilpa</creatorcontrib><creatorcontrib>BULL, Jason Kendrick</creatorcontrib><creatorcontrib>EHLMANN, Tonya S</creatorcontrib><creatorcontrib>REICH, Timothy</creatorcontrib><creatorcontrib>MACISAAC, Susan Andrea</creatorcontrib><creatorcontrib>SCHNICKER, Bruce J</creatorcontrib><creatorcontrib>TRAPP, Allan</creatorcontrib><creatorcontrib>SORGE, Matthew</creatorcontrib><creatorcontrib>JACOBS, Morrison</creatorcontrib><creatorcontrib>SHAH, Nikisha</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SSEGANE, Herbert</au><au>YANG, Xiao</au><au>XIE, Yao</au><au>SOOD, Shilpa</au><au>BULL, Jason Kendrick</au><au>EHLMANN, Tonya S</au><au>REICH, Timothy</au><au>MACISAAC, Susan Andrea</au><au>SCHNICKER, Bruce J</au><au>TRAPP, Allan</au><au>SORGE, Matthew</au><au>JACOBS, Morrison</au><au>SHAH, Nikisha</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION</title><date>2022-09-14</date><risdate>2022</risdate><abstract>Embodiments generate digital plans for agricultural fields. In an embodiment, a model receives digital inputs including stress risk data, product maturity data, field location data, planting date data, and/or harvest date data. The model mathematically correlates sets of digital inputs with threshold data associated with the stress risk data. The model is used to generate stress risk prediction data for a set of product maturity and field location combinations. In a digital plan, product maturity data or planting date data or harvest date data or field location data can be adjusted based on the stress risk prediction data. A digital plan can be transmitted to a field manager computing device. An agricultural apparatus can be moved in response to a digital plan.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3869934A4
source esp@cenet
subjects AGRICULTURE
ANIMAL HUSBANDRY
CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
FERTILISING
FISHING
FORESTRY
HARVESTING
HUMAN NECESSITIES
HUNTING
MOWING
PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES ORIMPLEMENTS, IN GENERAL
PHYSICS
PLANTING
SOIL WORKING IN AGRICULTURE OR FORESTRY
SOWING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAPPING
title USING MACHINE LEARNING-BASED SEED HARVEST MOISTURE PREDICTIONS TO IMPROVE A COMPUTER-ASSISTED AGRICULTURAL FARM OPERATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SSEGANE,%20Herbert&rft.date=2022-09-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3869934A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true