SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT

A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Salo, Daniel Clark
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Salo, Daniel Clark
description A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3846049A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3846049A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3846049A13</originalsourceid><addsrcrecordid>eNqNyzEKwjAUgOEsDlK9w7uAUGkRHWPyYgImkZeXIVMpEifRQr0_dvAATv_yf2uRU0mMHmTQ4JFt1GAigdMY2JniwgVUOSOxJZScwFD0kENiyoozoYYUlZPXBWsnQcXAi9yI1WN8znX7ayPAICu7q9N7qPM03uurfga8dcf-0PYnue_-WL4zdDB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><source>esp@cenet</source><creator>Salo, Daniel Clark</creator><creatorcontrib>Salo, Daniel Clark</creatorcontrib><description>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210707&amp;DB=EPODOC&amp;CC=EP&amp;NR=3846049A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210707&amp;DB=EPODOC&amp;CC=EP&amp;NR=3846049A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Salo, Daniel Clark</creatorcontrib><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><description>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwjAUgOEsDlK9w7uAUGkRHWPyYgImkZeXIVMpEifRQr0_dvAATv_yf2uRU0mMHmTQ4JFt1GAigdMY2JniwgVUOSOxJZScwFD0kENiyoozoYYUlZPXBWsnQcXAi9yI1WN8znX7ayPAICu7q9N7qPM03uurfga8dcf-0PYnue_-WL4zdDB0</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Salo, Daniel Clark</creator><scope>EVB</scope></search><sort><creationdate>20210707</creationdate><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><author>Salo, Daniel Clark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3846049A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Salo, Daniel Clark</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salo, Daniel Clark</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><date>2021-07-07</date><risdate>2021</risdate><abstract>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3846049A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Salo,%20Daniel%20Clark&rft.date=2021-07-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3846049A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true