SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT
A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of k...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Salo, Daniel Clark |
description | A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3846049A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3846049A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3846049A13</originalsourceid><addsrcrecordid>eNqNyzEKwjAUgOEsDlK9w7uAUGkRHWPyYgImkZeXIVMpEifRQr0_dvAATv_yf2uRU0mMHmTQ4JFt1GAigdMY2JniwgVUOSOxJZScwFD0kENiyoozoYYUlZPXBWsnQcXAi9yI1WN8znX7ayPAICu7q9N7qPM03uurfga8dcf-0PYnue_-WL4zdDB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><source>esp@cenet</source><creator>Salo, Daniel Clark</creator><creatorcontrib>Salo, Daniel Clark</creatorcontrib><description>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210707&DB=EPODOC&CC=EP&NR=3846049A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210707&DB=EPODOC&CC=EP&NR=3846049A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Salo, Daniel Clark</creatorcontrib><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><description>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwjAUgOEsDlK9w7uAUGkRHWPyYgImkZeXIVMpEifRQr0_dvAATv_yf2uRU0mMHmTQ4JFt1GAigdMY2JniwgVUOSOxJZScwFD0kENiyoozoYYUlZPXBWsnQcXAi9yI1WN8znX7ayPAICu7q9N7qPM03uurfga8dcf-0PYnue_-WL4zdDB0</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Salo, Daniel Clark</creator><scope>EVB</scope></search><sort><creationdate>20210707</creationdate><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><author>Salo, Daniel Clark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3846049A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Salo, Daniel Clark</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salo, Daniel Clark</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT</title><date>2021-07-07</date><risdate>2021</risdate><abstract>A cyberthreat detection system queries (301) a content database for unstructured content that contains a set of keywords, clusters (303) the unstructured content into clusters based on topics, and determines (305) a cybersecurity cluster utilizing a list of vetted cybersecurity phrases. The set of keywords represents a target of interest such as a newly discovered cyberthreat, an entity, a brand, or a combination thereof. The cybersecurity cluster thus determined is composed of unstructured content that has the set of keywords as well as some percentage of the vetted cybersecurity phrases. If the size of the cybersecurity cluster, as compared to the amount of unstructured content queried from the content database, meets or exceeds a predetermined threshold, the query is saved (309) as a new classifier rule that can then be used by a cybersecurity classifier to automatically, dynamically and timely identify the target of interest in unclassified unstructured content.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3846049A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | SYSTEM AND METHOD FOR IDENTIFYING CYBERTHREATS FROM UNSTRUCTURED SOCIAL MEDIA CONTENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Salo,%20Daniel%20Clark&rft.date=2021-07-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3846049A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |