DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION
Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PERRY, Adi ROSENTHAL, Guy BARAK, Lior |
description | Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3827417A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3827417A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3827417A43</originalsourceid><addsrcrecordid>eNrjZHBwcXUNUAgIcnXxdA7xD1IIcnUODQpy9QtR8HMNDXL0AVIh4f5B3gpuQEkPV0cXhQD_YFeYBk9_Px4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGxhZG5iaO5oYkyEEgBnYypr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><source>esp@cenet</source><creator>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</creator><creatorcontrib>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</creatorcontrib><description>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</description><language>eng ; fre ; ger</language><subject>AMUSEMENTS ; CALCULATING ; CARD, BOARD, OR ROULETTE GAMES ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GAMES ; GAMES NOT OTHERWISE PROVIDED FOR ; HUMAN NECESSITIES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INDOOR GAMES USING SMALL MOVING PLAYING BODIES ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS ; SPORTS ; VIDEO GAMES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220427&DB=EPODOC&CC=EP&NR=3827417A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220427&DB=EPODOC&CC=EP&NR=3827417A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PERRY, Adi</creatorcontrib><creatorcontrib>ROSENTHAL, Guy</creatorcontrib><creatorcontrib>BARAK, Lior</creatorcontrib><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><description>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</description><subject>AMUSEMENTS</subject><subject>CALCULATING</subject><subject>CARD, BOARD, OR ROULETTE GAMES</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GAMES</subject><subject>GAMES NOT OTHERWISE PROVIDED FOR</subject><subject>HUMAN NECESSITIES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>SPORTS</subject><subject>VIDEO GAMES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwcXUNUAgIcnXxdA7xD1IIcnUODQpy9QtR8HMNDXL0AVIh4f5B3gpuQEkPV0cXhQD_YFeYBk9_Px4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGxhZG5iaO5oYkyEEgBnYypr</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>PERRY, Adi</creator><creator>ROSENTHAL, Guy</creator><creator>BARAK, Lior</creator><scope>EVB</scope></search><sort><creationdate>20220427</creationdate><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><author>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3827417A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>AMUSEMENTS</topic><topic>CALCULATING</topic><topic>CARD, BOARD, OR ROULETTE GAMES</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GAMES</topic><topic>GAMES NOT OTHERWISE PROVIDED FOR</topic><topic>HUMAN NECESSITIES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>SPORTS</topic><topic>VIDEO GAMES</topic><toplevel>online_resources</toplevel><creatorcontrib>PERRY, Adi</creatorcontrib><creatorcontrib>ROSENTHAL, Guy</creatorcontrib><creatorcontrib>BARAK, Lior</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PERRY, Adi</au><au>ROSENTHAL, Guy</au><au>BARAK, Lior</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><date>2022-04-27</date><risdate>2022</risdate><abstract>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3827417A4 |
source | esp@cenet |
subjects | AMUSEMENTS CALCULATING CARD, BOARD, OR ROULETTE GAMES COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING GAMES GAMES NOT OTHERWISE PROVIDED FOR HUMAN NECESSITIES IMAGE DATA PROCESSING OR GENERATION, IN GENERAL INDOOR GAMES USING SMALL MOVING PLAYING BODIES OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PHYSICS SPORTS VIDEO GAMES |
title | DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PERRY,%20Adi&rft.date=2022-04-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3827417A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |