DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION

Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PERRY, Adi, ROSENTHAL, Guy, BARAK, Lior
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PERRY, Adi
ROSENTHAL, Guy
BARAK, Lior
description Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3827417A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3827417A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3827417A43</originalsourceid><addsrcrecordid>eNrjZHBwcXUNUAgIcnXxdA7xD1IIcnUODQpy9QtR8HMNDXL0AVIh4f5B3gpuQEkPV0cXhQD_YFeYBk9_Px4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGxhZG5iaO5oYkyEEgBnYypr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><source>esp@cenet</source><creator>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</creator><creatorcontrib>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</creatorcontrib><description>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</description><language>eng ; fre ; ger</language><subject>AMUSEMENTS ; CALCULATING ; CARD, BOARD, OR ROULETTE GAMES ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GAMES ; GAMES NOT OTHERWISE PROVIDED FOR ; HUMAN NECESSITIES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INDOOR GAMES USING SMALL MOVING PLAYING BODIES ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS ; SPORTS ; VIDEO GAMES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220427&amp;DB=EPODOC&amp;CC=EP&amp;NR=3827417A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220427&amp;DB=EPODOC&amp;CC=EP&amp;NR=3827417A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PERRY, Adi</creatorcontrib><creatorcontrib>ROSENTHAL, Guy</creatorcontrib><creatorcontrib>BARAK, Lior</creatorcontrib><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><description>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</description><subject>AMUSEMENTS</subject><subject>CALCULATING</subject><subject>CARD, BOARD, OR ROULETTE GAMES</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GAMES</subject><subject>GAMES NOT OTHERWISE PROVIDED FOR</subject><subject>HUMAN NECESSITIES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>SPORTS</subject><subject>VIDEO GAMES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwcXUNUAgIcnXxdA7xD1IIcnUODQpy9QtR8HMNDXL0AVIh4f5B3gpuQEkPV0cXhQD_YFeYBk9_Px4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGxhZG5iaO5oYkyEEgBnYypr</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>PERRY, Adi</creator><creator>ROSENTHAL, Guy</creator><creator>BARAK, Lior</creator><scope>EVB</scope></search><sort><creationdate>20220427</creationdate><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><author>PERRY, Adi ; ROSENTHAL, Guy ; BARAK, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3827417A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>AMUSEMENTS</topic><topic>CALCULATING</topic><topic>CARD, BOARD, OR ROULETTE GAMES</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GAMES</topic><topic>GAMES NOT OTHERWISE PROVIDED FOR</topic><topic>HUMAN NECESSITIES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>SPORTS</topic><topic>VIDEO GAMES</topic><toplevel>online_resources</toplevel><creatorcontrib>PERRY, Adi</creatorcontrib><creatorcontrib>ROSENTHAL, Guy</creatorcontrib><creatorcontrib>BARAK, Lior</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PERRY, Adi</au><au>ROSENTHAL, Guy</au><au>BARAK, Lior</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION</title><date>2022-04-27</date><risdate>2022</risdate><abstract>Systems and methods for predicting head pose for a rendering engine of an augmented or virtual reality device can include a recurrent neural network (RNN) that accepts a time series of head pose data and outputs a predicted head pose. The recurrent neural network can include one or more long short term memory (LSTM) units or gated recurrent units (GRUs). A fully connected (FC) layer can accept input from the RNN and output a 3 degree-of-freedom (DOF) head pose (e.g., angular orientation or spatial position) or a 6 DOF head pose (e.g., both angular orientation and spatial position). The rendering engine can use the predicted head pose to generate and display virtual content to the user at the time the user looks toward the position of the virtual content, which reduces system latency and improves user experience.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3827417A4
source esp@cenet
subjects AMUSEMENTS
CALCULATING
CARD, BOARD, OR ROULETTE GAMES
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GAMES
GAMES NOT OTHERWISE PROVIDED FOR
HUMAN NECESSITIES
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INDOOR GAMES USING SMALL MOVING PLAYING BODIES
OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
OPTICS
PHYSICS
SPORTS
VIDEO GAMES
title DEEP PREDICTOR RECURRENT NEURAL NETWORK FOR HEAD POSE PREDICTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PERRY,%20Adi&rft.date=2022-04-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3827417A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true