THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS

A laser beam shaping system which has a laser resonator configured to operate at a resonating, first wavelength range to produce an intracavity resonating beam and a laser gain material, configured to produce gain and to amplify the first wavelength range within the laser resonator. The system has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NAIDOO, Darryl, STRAUSS, Hencharl
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NAIDOO, Darryl
STRAUSS, Hencharl
description A laser beam shaping system which has a laser resonator configured to operate at a resonating, first wavelength range to produce an intracavity resonating beam and a laser gain material, configured to produce gain and to amplify the first wavelength range within the laser resonator. The system has at least one doped medium, which is optically transparent at the first wavelength range, which is doped with a dopant, and which is provided intracavity in the laser resonator and at least one absorbed beam input or coupling configured to generate or receive at least one absorbed beam at a second wavelength range which is different from the first wavelength range and which is directed towards the doped medium. The doped medium has a higher absorption characteristic at the second wavelength range than at the first wavelength range, causing the absorbed beam to have a higher absorption than the resonating beam in the doped medium, but which does not provide gain in the first wavelength range. Optical surfaces of the doped medium are coated to be anti-reflective at the first wavelength range and highly transmissive at the second wavelength range.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3815199A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3815199A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3815199A13</originalsourceid><addsrcrecordid>eNqNy00KwjAQQOFuXIh6h7lAF6EIdjkmoxnIH8mguCpF4kq0UO-PIh7A1dt8b9kUsZR9bGMS1sBBMmo8sVxgT-ihWEwcjoDBgI-GQMcPiQ7OLBZMTGTgu6IDj0KZ0ZV1s7iN97lufl01cCDRtq3Tc6jzNF7ro74GSt1ObVXfo-r-IG-k1C-B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS</title><source>esp@cenet</source><creator>NAIDOO, Darryl ; STRAUSS, Hencharl</creator><creatorcontrib>NAIDOO, Darryl ; STRAUSS, Hencharl</creatorcontrib><description>A laser beam shaping system which has a laser resonator configured to operate at a resonating, first wavelength range to produce an intracavity resonating beam and a laser gain material, configured to produce gain and to amplify the first wavelength range within the laser resonator. The system has at least one doped medium, which is optically transparent at the first wavelength range, which is doped with a dopant, and which is provided intracavity in the laser resonator and at least one absorbed beam input or coupling configured to generate or receive at least one absorbed beam at a second wavelength range which is different from the first wavelength range and which is directed towards the doped medium. The doped medium has a higher absorption characteristic at the second wavelength range than at the first wavelength range, causing the absorbed beam to have a higher absorption than the resonating beam in the doped medium, but which does not provide gain in the first wavelength range. Optical surfaces of the doped medium are coated to be anti-reflective at the first wavelength range and highly transmissive at the second wavelength range.</description><language>eng ; fre ; ger</language><subject>BASIC ELECTRIC ELEMENTS ; DEVICES USING STIMULATED EMISSION ; ELECTRICITY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210505&amp;DB=EPODOC&amp;CC=EP&amp;NR=3815199A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210505&amp;DB=EPODOC&amp;CC=EP&amp;NR=3815199A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NAIDOO, Darryl</creatorcontrib><creatorcontrib>STRAUSS, Hencharl</creatorcontrib><title>THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS</title><description>A laser beam shaping system which has a laser resonator configured to operate at a resonating, first wavelength range to produce an intracavity resonating beam and a laser gain material, configured to produce gain and to amplify the first wavelength range within the laser resonator. The system has at least one doped medium, which is optically transparent at the first wavelength range, which is doped with a dopant, and which is provided intracavity in the laser resonator and at least one absorbed beam input or coupling configured to generate or receive at least one absorbed beam at a second wavelength range which is different from the first wavelength range and which is directed towards the doped medium. The doped medium has a higher absorption characteristic at the second wavelength range than at the first wavelength range, causing the absorbed beam to have a higher absorption than the resonating beam in the doped medium, but which does not provide gain in the first wavelength range. Optical surfaces of the doped medium are coated to be anti-reflective at the first wavelength range and highly transmissive at the second wavelength range.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>DEVICES USING STIMULATED EMISSION</subject><subject>ELECTRICITY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy00KwjAQQOFuXIh6h7lAF6EIdjkmoxnIH8mguCpF4kq0UO-PIh7A1dt8b9kUsZR9bGMS1sBBMmo8sVxgT-ihWEwcjoDBgI-GQMcPiQ7OLBZMTGTgu6IDj0KZ0ZV1s7iN97lufl01cCDRtq3Tc6jzNF7ro74GSt1ObVXfo-r-IG-k1C-B</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>NAIDOO, Darryl</creator><creator>STRAUSS, Hencharl</creator><scope>EVB</scope></search><sort><creationdate>20210505</creationdate><title>THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS</title><author>NAIDOO, Darryl ; STRAUSS, Hencharl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3815199A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>DEVICES USING STIMULATED EMISSION</topic><topic>ELECTRICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>NAIDOO, Darryl</creatorcontrib><creatorcontrib>STRAUSS, Hencharl</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NAIDOO, Darryl</au><au>STRAUSS, Hencharl</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS</title><date>2021-05-05</date><risdate>2021</risdate><abstract>A laser beam shaping system which has a laser resonator configured to operate at a resonating, first wavelength range to produce an intracavity resonating beam and a laser gain material, configured to produce gain and to amplify the first wavelength range within the laser resonator. The system has at least one doped medium, which is optically transparent at the first wavelength range, which is doped with a dopant, and which is provided intracavity in the laser resonator and at least one absorbed beam input or coupling configured to generate or receive at least one absorbed beam at a second wavelength range which is different from the first wavelength range and which is directed towards the doped medium. The doped medium has a higher absorption characteristic at the second wavelength range than at the first wavelength range, causing the absorbed beam to have a higher absorption than the resonating beam in the doped medium, but which does not provide gain in the first wavelength range. Optical surfaces of the doped medium are coated to be anti-reflective at the first wavelength range and highly transmissive at the second wavelength range.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3815199A1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
DEVICES USING STIMULATED EMISSION
ELECTRICITY
title THERMO-OPTIC INTRACAVITY BEAM SHAPING AND MODE CONTROL WITH DOPED OPTICAL MATERIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NAIDOO,%20Darryl&rft.date=2021-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3815199A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true