SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK

There is provided a method comprising: providing two anatomical images 104 of a target individual, each captured at a unique orientation of the target individual, inputting first and second anatomical images respectively into a first and second convolutional neural network (CNN) of a classifier to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LASERSON, Jonathan, GOZ, Eli, BRESTEL, Chen
Format: Patent
Sprache:eng ; fre ; ger
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LASERSON, Jonathan
GOZ, Eli
BRESTEL, Chen
description There is provided a method comprising: providing two anatomical images 104 of a target individual, each captured at a unique orientation of the target individual, inputting first and second anatomical images respectively into a first and second convolutional neural network (CNN) of a classifier to respectively output first and second feature vectors, inputting a concatenation of the first and second feature vectors into a fully connected layer of the classifier 110, and computing an indication of distinct visual finding(s) 112 present in the anatomical images by the fully connected layer, wherein the statistical classifier is trained on a training dataset including two anatomical images of each respective sample individual, each image captured at a respective unique orientation of the target individual, and a tag created based on an analysis that maps respective individual sentences of a text based radiology report to one of multiple indications of visual findings.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3791310A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3791310A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3791310A13</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFuXIh6h7lAwZKFuBzSSRtsMiUZEVelSARBtFDvjxE9gKu3-L-3LG7xHIVcBPQ1OJKW6wiGA_SByj6wphitb3JGYWc1dmAdNvRFhqj-VOuFAUF3mLXJSix78HQM2XuSE4fDulhcx_ucNr9dFfkuui3T9BzSPI2X9EivgXq121eq2mKl_iBv8mw1fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK</title><source>esp@cenet</source><creator>LASERSON, Jonathan ; GOZ, Eli ; BRESTEL, Chen</creator><creatorcontrib>LASERSON, Jonathan ; GOZ, Eli ; BRESTEL, Chen</creatorcontrib><description>There is provided a method comprising: providing two anatomical images 104 of a target individual, each captured at a unique orientation of the target individual, inputting first and second anatomical images respectively into a first and second convolutional neural network (CNN) of a classifier to respectively output first and second feature vectors, inputting a concatenation of the first and second feature vectors into a fully connected layer of the classifier 110, and computing an indication of distinct visual finding(s) 112 present in the anatomical images by the fully connected layer, wherein the statistical classifier is trained on a training dataset including two anatomical images of each respective sample individual, each image captured at a respective unique orientation of the target individual, and a tag created based on an analysis that maps respective individual sentences of a text based radiology report to one of multiple indications of visual findings.</description><language>eng ; fre ; ger</language><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210317&amp;DB=EPODOC&amp;CC=EP&amp;NR=3791310A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210317&amp;DB=EPODOC&amp;CC=EP&amp;NR=3791310A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LASERSON, Jonathan</creatorcontrib><creatorcontrib>GOZ, Eli</creatorcontrib><creatorcontrib>BRESTEL, Chen</creatorcontrib><title>SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK</title><description>There is provided a method comprising: providing two anatomical images 104 of a target individual, each captured at a unique orientation of the target individual, inputting first and second anatomical images respectively into a first and second convolutional neural network (CNN) of a classifier to respectively output first and second feature vectors, inputting a concatenation of the first and second feature vectors into a fully connected layer of the classifier 110, and computing an indication of distinct visual finding(s) 112 present in the anatomical images by the fully connected layer, wherein the statistical classifier is trained on a training dataset including two anatomical images of each respective sample individual, each image captured at a respective unique orientation of the target individual, and a tag created based on an analysis that maps respective individual sentences of a text based radiology report to one of multiple indications of visual findings.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFuXIh6h7lAwZKFuBzSSRtsMiUZEVelSARBtFDvjxE9gKu3-L-3LG7xHIVcBPQ1OJKW6wiGA_SByj6wphitb3JGYWc1dmAdNvRFhqj-VOuFAUF3mLXJSix78HQM2XuSE4fDulhcx_ucNr9dFfkuui3T9BzSPI2X9EivgXq121eq2mKl_iBv8mw1fw</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>LASERSON, Jonathan</creator><creator>GOZ, Eli</creator><creator>BRESTEL, Chen</creator><scope>EVB</scope></search><sort><creationdate>20210317</creationdate><title>SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK</title><author>LASERSON, Jonathan ; GOZ, Eli ; BRESTEL, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3791310A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>LASERSON, Jonathan</creatorcontrib><creatorcontrib>GOZ, Eli</creatorcontrib><creatorcontrib>BRESTEL, Chen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LASERSON, Jonathan</au><au>GOZ, Eli</au><au>BRESTEL, Chen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK</title><date>2021-03-17</date><risdate>2021</risdate><abstract>There is provided a method comprising: providing two anatomical images 104 of a target individual, each captured at a unique orientation of the target individual, inputting first and second anatomical images respectively into a first and second convolutional neural network (CNN) of a classifier to respectively output first and second feature vectors, inputting a concatenation of the first and second feature vectors into a fully connected layer of the classifier 110, and computing an indication of distinct visual finding(s) 112 present in the anatomical images by the fully connected layer, wherein the statistical classifier is trained on a training dataset including two anatomical images of each respective sample individual, each image captured at a respective unique orientation of the target individual, and a tag created based on an analysis that maps respective individual sentences of a text based radiology report to one of multiple indications of visual findings.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3791310A1
source esp@cenet
title SYSTEMS AND METHODS FOR PRE-PROCESSING ANATOMICAL IMAGES FOR FEEDING INTO A CLASSIFICATION NEURAL NETWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LASERSON,%20Jonathan&rft.date=2021-03-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3791310A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true