PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION

A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NAG, Abhikesh, YAMAGA, Cynthia
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NAG, Abhikesh
YAMAGA, Cynthia
description A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learning model may be applied to identify, in the peer network, one or more peer communities of clinicians. The activity pattern of a clinician may be compared to the activity patterns of other clinicians in the same peer community to determine whether that clinician exhibits anomalous behavior. An investigative workflow may be triggered when the clinician is determined to exhibit anomalous behavior. The investigative workflow may include generating an alert, activating surveillance devices, and/or isolating medication accessed by the clinician.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3788634A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3788634A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3788634A13</originalsourceid><addsrcrecordid>eNrjZDAMcHUNUnD29_UN9fMMiVRwcgx2dVFw9PP3dfTxDw1WcHL1cAzz9A9ScHENcXUO8fT342FgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BxuYWFmbGJo6GxkQoAQAWhyZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION</title><source>esp@cenet</source><creator>NAG, Abhikesh ; YAMAGA, Cynthia</creator><creatorcontrib>NAG, Abhikesh ; YAMAGA, Cynthia</creatorcontrib><description>A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learning model may be applied to identify, in the peer network, one or more peer communities of clinicians. The activity pattern of a clinician may be compared to the activity patterns of other clinicians in the same peer community to determine whether that clinician exhibits anomalous behavior. An investigative workflow may be triggered when the clinician is determined to exhibit anomalous behavior. The investigative workflow may include generating an alert, activating surveillance devices, and/or isolating medication accessed by the clinician.</description><language>eng ; fre ; ger</language><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210310&amp;DB=EPODOC&amp;CC=EP&amp;NR=3788634A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210310&amp;DB=EPODOC&amp;CC=EP&amp;NR=3788634A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NAG, Abhikesh</creatorcontrib><creatorcontrib>YAMAGA, Cynthia</creatorcontrib><title>PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION</title><description>A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learning model may be applied to identify, in the peer network, one or more peer communities of clinicians. The activity pattern of a clinician may be compared to the activity patterns of other clinicians in the same peer community to determine whether that clinician exhibits anomalous behavior. An investigative workflow may be triggered when the clinician is determined to exhibit anomalous behavior. The investigative workflow may include generating an alert, activating surveillance devices, and/or isolating medication accessed by the clinician.</description><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAMcHUNUnD29_UN9fMMiVRwcgx2dVFw9PP3dfTxDw1WcHL1cAzz9A9ScHENcXUO8fT342FgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BxuYWFmbGJo6GxkQoAQAWhyZc</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>NAG, Abhikesh</creator><creator>YAMAGA, Cynthia</creator><scope>EVB</scope></search><sort><creationdate>20210310</creationdate><title>PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION</title><author>NAG, Abhikesh ; YAMAGA, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3788634A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NAG, Abhikesh</creatorcontrib><creatorcontrib>YAMAGA, Cynthia</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NAG, Abhikesh</au><au>YAMAGA, Cynthia</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION</title><date>2021-03-10</date><risdate>2021</risdate><abstract>A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learning model may be applied to identify, in the peer network, one or more peer communities of clinicians. The activity pattern of a clinician may be compared to the activity patterns of other clinicians in the same peer community to determine whether that clinician exhibits anomalous behavior. An investigative workflow may be triggered when the clinician is determined to exhibit anomalous behavior. The investigative workflow may include generating an alert, activating surveillance devices, and/or isolating medication accessed by the clinician.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3788634A1
source esp@cenet
subjects HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title PEER COMMUNITY BASED ANOMALOUS BEHAVIOR DETECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NAG,%20Abhikesh&rft.date=2021-03-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3788634A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true