IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network. In one aspect, a method comprises: obtaining an expert observation; processing the expert observation using a generative neural network system to...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | VECERIK, Mel SCHROECKER, Yannick SCHOLZ, Karl Jonathan |
description | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network. In one aspect, a method comprises: obtaining an expert observation; processing the expert observation using a generative neural network system to generate a given observation - given action pair, wherein the generative neural network system has been trained to be more likely to generate a particular observation - particular action pair if performing the particular action in response to the particular observation is more likely to result in the environment later reaching the state characterized by a target observation; processing the given observation using the action selection policy neural network to generate a given action score for the given action; and adjusting the current values of the action selection policy neural network parameters to increase the given action score for the given action. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3788554A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3788554A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3788554A13</originalsourceid><addsrcrecordid>eNrjZHDw9PUMcQzx9PdT8HF1DPLz9HNXCA0GkY4K7q5-rkFAuTBXhYAgVxdXZ9fgYP8gBT_X0CBHHyAVEu4f5M3DwJqWmFOcyguluRkU3FxDnD10Uwvy41OLCxKTU_NSS-JdA4zNLSxMTU0cDY2JUAIAd2oqng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK</title><source>esp@cenet</source><creator>VECERIK, Mel ; SCHROECKER, Yannick ; SCHOLZ, Karl Jonathan</creator><creatorcontrib>VECERIK, Mel ; SCHROECKER, Yannick ; SCHOLZ, Karl Jonathan</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network. In one aspect, a method comprises: obtaining an expert observation; processing the expert observation using a generative neural network system to generate a given observation - given action pair, wherein the generative neural network system has been trained to be more likely to generate a particular observation - particular action pair if performing the particular action in response to the particular observation is more likely to result in the environment later reaching the state characterized by a target observation; processing the given observation using the action selection policy neural network to generate a given action score for the given action; and adjusting the current values of the action selection policy neural network parameters to increase the given action score for the given action.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210310&DB=EPODOC&CC=EP&NR=3788554A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210310&DB=EPODOC&CC=EP&NR=3788554A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VECERIK, Mel</creatorcontrib><creatorcontrib>SCHROECKER, Yannick</creatorcontrib><creatorcontrib>SCHOLZ, Karl Jonathan</creatorcontrib><title>IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network. In one aspect, a method comprises: obtaining an expert observation; processing the expert observation using a generative neural network system to generate a given observation - given action pair, wherein the generative neural network system has been trained to be more likely to generate a particular observation - particular action pair if performing the particular action in response to the particular observation is more likely to result in the environment later reaching the state characterized by a target observation; processing the given observation using the action selection policy neural network to generate a given action score for the given action; and adjusting the current values of the action selection policy neural network parameters to increase the given action score for the given action.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDw9PUMcQzx9PdT8HF1DPLz9HNXCA0GkY4K7q5-rkFAuTBXhYAgVxdXZ9fgYP8gBT_X0CBHHyAVEu4f5M3DwJqWmFOcyguluRkU3FxDnD10Uwvy41OLCxKTU_NSS-JdA4zNLSxMTU0cDY2JUAIAd2oqng</recordid><startdate>20210310</startdate><enddate>20210310</enddate><creator>VECERIK, Mel</creator><creator>SCHROECKER, Yannick</creator><creator>SCHOLZ, Karl Jonathan</creator><scope>EVB</scope></search><sort><creationdate>20210310</creationdate><title>IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK</title><author>VECERIK, Mel ; SCHROECKER, Yannick ; SCHOLZ, Karl Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3788554A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>VECERIK, Mel</creatorcontrib><creatorcontrib>SCHROECKER, Yannick</creatorcontrib><creatorcontrib>SCHOLZ, Karl Jonathan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VECERIK, Mel</au><au>SCHROECKER, Yannick</au><au>SCHOLZ, Karl Jonathan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK</title><date>2021-03-10</date><risdate>2021</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection policy neural network. In one aspect, a method comprises: obtaining an expert observation; processing the expert observation using a generative neural network system to generate a given observation - given action pair, wherein the generative neural network system has been trained to be more likely to generate a particular observation - particular action pair if performing the particular action in response to the particular observation is more likely to result in the environment later reaching the state characterized by a target observation; processing the given observation using the action selection policy neural network to generate a given action score for the given action; and adjusting the current values of the action selection policy neural network parameters to increase the given action score for the given action.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3788554A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | IMITATION LEARNING USING A GENERATIVE PREDECESSOR NEURAL NETWORK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VECERIK,%20Mel&rft.date=2021-03-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3788554A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |