CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE

A high transference number, thin-film electrolyte structure suitable for a battery includes a non-conducting organic phase portion and plurality of ion-conducting inorganic phase structures. The inorganic phase structures are dispersed throughout the organic phase portion and arranged generally in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TERAN, Natasha, HELLSTROM, Sondra, CHRISTENSEN, John F
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TERAN, Natasha
HELLSTROM, Sondra
CHRISTENSEN, John F
description A high transference number, thin-film electrolyte structure suitable for a battery includes a non-conducting organic phase portion and plurality of ion-conducting inorganic phase structures. The inorganic phase structures are dispersed throughout the organic phase portion and arranged generally in a layer. The inorganic phase structures are configured to span a thickness of the organic phase portion such that a respective portion of each structure is exposed on opposite sides of the organic phase portion. Respective interfaces between the organic phase portion and the inorganic phase structures possess strong adhesion characteristics via an unbroken chain of ionic bonds and/or covalent bonds. The interfaces in some embodiments include at least one adhesion promoter configured to promote adhesion between the organic phase portion and the inorganic phase structures. The inorganic phase structures in some embodiments have surfaces that are modified using a surface modification agent to promote adhesion to the organic phase portion.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3695452B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3695452B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3695452B13</originalsourceid><addsrcrecordid>eNrjZHB1dg1y9PV01g3w94n0dQ1ScPb3DfAP9gxxVQj29HP3cVXw9PcDCvq5hDqHAAUUQjw8_RTcPH18FVx9XJ1DgoDaQlx5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmaWpiamRk6ExEUoATW0r8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE</title><source>esp@cenet</source><creator>TERAN, Natasha ; HELLSTROM, Sondra ; CHRISTENSEN, John F</creator><creatorcontrib>TERAN, Natasha ; HELLSTROM, Sondra ; CHRISTENSEN, John F</creatorcontrib><description>A high transference number, thin-film electrolyte structure suitable for a battery includes a non-conducting organic phase portion and plurality of ion-conducting inorganic phase structures. The inorganic phase structures are dispersed throughout the organic phase portion and arranged generally in a layer. The inorganic phase structures are configured to span a thickness of the organic phase portion such that a respective portion of each structure is exposed on opposite sides of the organic phase portion. Respective interfaces between the organic phase portion and the inorganic phase structures possess strong adhesion characteristics via an unbroken chain of ionic bonds and/or covalent bonds. The interfaces in some embodiments include at least one adhesion promoter configured to promote adhesion between the organic phase portion and the inorganic phase structures. The inorganic phase structures in some embodiments have surfaces that are modified using a surface modification agent to promote adhesion to the organic phase portion.</description><language>eng ; fre ; ger</language><subject>BASIC ELECTRIC ELEMENTS ; ELECTRICITY ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241211&amp;DB=EPODOC&amp;CC=EP&amp;NR=3695452B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241211&amp;DB=EPODOC&amp;CC=EP&amp;NR=3695452B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TERAN, Natasha</creatorcontrib><creatorcontrib>HELLSTROM, Sondra</creatorcontrib><creatorcontrib>CHRISTENSEN, John F</creatorcontrib><title>CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE</title><description>A high transference number, thin-film electrolyte structure suitable for a battery includes a non-conducting organic phase portion and plurality of ion-conducting inorganic phase structures. The inorganic phase structures are dispersed throughout the organic phase portion and arranged generally in a layer. The inorganic phase structures are configured to span a thickness of the organic phase portion such that a respective portion of each structure is exposed on opposite sides of the organic phase portion. Respective interfaces between the organic phase portion and the inorganic phase structures possess strong adhesion characteristics via an unbroken chain of ionic bonds and/or covalent bonds. The interfaces in some embodiments include at least one adhesion promoter configured to promote adhesion between the organic phase portion and the inorganic phase structures. The inorganic phase structures in some embodiments have surfaces that are modified using a surface modification agent to promote adhesion to the organic phase portion.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>ELECTRICITY</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1dg1y9PV01g3w94n0dQ1ScPb3DfAP9gxxVQj29HP3cVXw9PcDCvq5hDqHAAUUQjw8_RTcPH18FVx9XJ1DgoDaQlx5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmaWpiamRk6ExEUoATW0r8w</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>TERAN, Natasha</creator><creator>HELLSTROM, Sondra</creator><creator>CHRISTENSEN, John F</creator><scope>EVB</scope></search><sort><creationdate>20241211</creationdate><title>CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE</title><author>TERAN, Natasha ; HELLSTROM, Sondra ; CHRISTENSEN, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3695452B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>ELECTRICITY</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>TERAN, Natasha</creatorcontrib><creatorcontrib>HELLSTROM, Sondra</creatorcontrib><creatorcontrib>CHRISTENSEN, John F</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TERAN, Natasha</au><au>HELLSTROM, Sondra</au><au>CHRISTENSEN, John F</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE</title><date>2024-12-11</date><risdate>2024</risdate><abstract>A high transference number, thin-film electrolyte structure suitable for a battery includes a non-conducting organic phase portion and plurality of ion-conducting inorganic phase structures. The inorganic phase structures are dispersed throughout the organic phase portion and arranged generally in a layer. The inorganic phase structures are configured to span a thickness of the organic phase portion such that a respective portion of each structure is exposed on opposite sides of the organic phase portion. Respective interfaces between the organic phase portion and the inorganic phase structures possess strong adhesion characteristics via an unbroken chain of ionic bonds and/or covalent bonds. The interfaces in some embodiments include at least one adhesion promoter configured to promote adhesion between the organic phase portion and the inorganic phase structures. The inorganic phase structures in some embodiments have surfaces that are modified using a surface modification agent to promote adhesion to the organic phase portion.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3695452B1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
ELECTRICITY
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY
title CERAMIC-POLYMER COMPOSITE SINGLE ION CONDUCTING THIN FILM ELECTROLYTE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TERAN,%20Natasha&rft.date=2024-12-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3695452B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true