ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS
An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measuremen...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LV, Youchao CAO, Jun ZHAO, Pengfei LIU, Chang ZANG, Kaifeng WANG, Erbin |
description | An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3692900B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3692900B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3692900B13</originalsourceid><addsrcrecordid>eNqNijEKwkAQANNYiPqH_cBBNCCk3Fw2ycJ6Oe7WIlUIelaigfh_TOEDLIZhYLbZHYNyw5ZRgJ2SCLfkLEEkaYwQBseuNRVGqiEqKlsgIauhtxhq7tuAvhsAHcoQOcKFtOvrtVe8x4B6jfts85ieSzr8vMugIbWdSfN7TMs83dIrfUbyxbk8lXleHYs_li8J6DRp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><source>esp@cenet</source><creator>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</creator><creatorcontrib>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</creatorcontrib><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><language>eng ; fre ; ger</language><subject>DIAGNOSIS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240828&DB=EPODOC&CC=EP&NR=3692900B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240828&DB=EPODOC&CC=EP&NR=3692900B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>ZHAO, Pengfei</creatorcontrib><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>ZANG, Kaifeng</creatorcontrib><creatorcontrib>WANG, Erbin</creatorcontrib><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><subject>DIAGNOSIS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQANNYiPqH_cBBNCCk3Fw2ycJ6Oe7WIlUIelaigfh_TOEDLIZhYLbZHYNyw5ZRgJ2SCLfkLEEkaYwQBseuNRVGqiEqKlsgIauhtxhq7tuAvhsAHcoQOcKFtOvrtVe8x4B6jfts85ieSzr8vMugIbWdSfN7TMs83dIrfUbyxbk8lXleHYs_li8J6DRp</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>LV, Youchao</creator><creator>CAO, Jun</creator><creator>ZHAO, Pengfei</creator><creator>LIU, Chang</creator><creator>ZANG, Kaifeng</creator><creator>WANG, Erbin</creator><scope>EVB</scope></search><sort><creationdate>20240828</creationdate><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><author>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3692900B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>DIAGNOSIS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>ZHAO, Pengfei</creatorcontrib><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>ZANG, Kaifeng</creatorcontrib><creatorcontrib>WANG, Erbin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LV, Youchao</au><au>CAO, Jun</au><au>ZHAO, Pengfei</au><au>LIU, Chang</au><au>ZANG, Kaifeng</au><au>WANG, Erbin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><date>2024-08-28</date><risdate>2024</risdate><abstract>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3692900B1 |
source | esp@cenet |
subjects | DIAGNOSIS HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA HUMAN NECESSITIES HYGIENE IDENTIFICATION INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY |
title | ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LV,%20Youchao&rft.date=2024-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3692900B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |