ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS

An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LV, Youchao, CAO, Jun, ZHAO, Pengfei, LIU, Chang, ZANG, Kaifeng, WANG, Erbin
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LV, Youchao
CAO, Jun
ZHAO, Pengfei
LIU, Chang
ZANG, Kaifeng
WANG, Erbin
description An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3692900B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3692900B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3692900B13</originalsourceid><addsrcrecordid>eNqNijEKwkAQANNYiPqH_cBBNCCk3Fw2ycJ6Oe7WIlUIelaigfh_TOEDLIZhYLbZHYNyw5ZRgJ2SCLfkLEEkaYwQBseuNRVGqiEqKlsgIauhtxhq7tuAvhsAHcoQOcKFtOvrtVe8x4B6jfts85ieSzr8vMugIbWdSfN7TMs83dIrfUbyxbk8lXleHYs_li8J6DRp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><source>esp@cenet</source><creator>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</creator><creatorcontrib>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</creatorcontrib><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><language>eng ; fre ; ger</language><subject>DIAGNOSIS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240828&amp;DB=EPODOC&amp;CC=EP&amp;NR=3692900B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240828&amp;DB=EPODOC&amp;CC=EP&amp;NR=3692900B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>ZHAO, Pengfei</creatorcontrib><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>ZANG, Kaifeng</creatorcontrib><creatorcontrib>WANG, Erbin</creatorcontrib><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><subject>DIAGNOSIS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQANNYiPqH_cBBNCCk3Fw2ycJ6Oe7WIlUIelaigfh_TOEDLIZhYLbZHYNyw5ZRgJ2SCLfkLEEkaYwQBseuNRVGqiEqKlsgIauhtxhq7tuAvhsAHcoQOcKFtOvrtVe8x4B6jfts85ieSzr8vMugIbWdSfN7TMs83dIrfUbyxbk8lXleHYs_li8J6DRp</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>LV, Youchao</creator><creator>CAO, Jun</creator><creator>ZHAO, Pengfei</creator><creator>LIU, Chang</creator><creator>ZANG, Kaifeng</creator><creator>WANG, Erbin</creator><scope>EVB</scope></search><sort><creationdate>20240828</creationdate><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><author>LV, Youchao ; CAO, Jun ; ZHAO, Pengfei ; LIU, Chang ; ZANG, Kaifeng ; WANG, Erbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3692900B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>DIAGNOSIS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>ZHAO, Pengfei</creatorcontrib><creatorcontrib>LIU, Chang</creatorcontrib><creatorcontrib>ZANG, Kaifeng</creatorcontrib><creatorcontrib>WANG, Erbin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LV, Youchao</au><au>CAO, Jun</au><au>ZHAO, Pengfei</au><au>LIU, Chang</au><au>ZANG, Kaifeng</au><au>WANG, Erbin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><date>2024-08-28</date><risdate>2024</risdate><abstract>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, said method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3692900B1
source esp@cenet
subjects DIAGNOSIS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LV,%20Youchao&rft.date=2024-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3692900B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true