IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS

A system and method for reconstructing an image of a target object using an iterative reconstruction technique can include a machine learning model as a regularization filter (100). An image data set for a target object generated using an imaging modality can be received, and an image of the target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RAMESH, Nisha, ATRIA, Cristian, YATSENKO, Dimitri
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RAMESH, Nisha
ATRIA, Cristian
YATSENKO, Dimitri
description A system and method for reconstructing an image of a target object using an iterative reconstruction technique can include a machine learning model as a regularization filter (100). An image data set for a target object generated using an imaging modality can be received, and an image of the target object can be reconstructed using an iterative reconstruction technique that includes a machine learning model as a regularization filter (100) used in part to reconstruct the image of the target object. The machine learning model can be trained prior to receiving the image data using learning datasets that have image data associated with the target object, where the learning datasets providing objective data for training the machine learning model, and the machine learning model can be included in the iterative reconstruction technique to introduce the object features into the image of the target object being reconstructed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3685350A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3685350A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3685350A13</originalsourceid><addsrcrecordid>eNrjZLDw9HV0d1UIcnX29wsOCQp1DvH091MIDfb0c1fwdXT28PRzVfBxdQzyAwkEubqH-jgGeUa5BgXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wBjMwtTY1MDR0NjIpQAADwyKHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS</title><source>esp@cenet</source><creator>RAMESH, Nisha ; ATRIA, Cristian ; YATSENKO, Dimitri</creator><creatorcontrib>RAMESH, Nisha ; ATRIA, Cristian ; YATSENKO, Dimitri</creatorcontrib><description>A system and method for reconstructing an image of a target object using an iterative reconstruction technique can include a machine learning model as a regularization filter (100). An image data set for a target object generated using an imaging modality can be received, and an image of the target object can be reconstructed using an iterative reconstruction technique that includes a machine learning model as a regularization filter (100) used in part to reconstruct the image of the target object. The machine learning model can be trained prior to receiving the image data using learning datasets that have image data associated with the target object, where the learning datasets providing objective data for training the machine learning model, and the machine learning model can be included in the iterative reconstruction technique to introduce the object features into the image of the target object being reconstructed.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200729&amp;DB=EPODOC&amp;CC=EP&amp;NR=3685350A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200729&amp;DB=EPODOC&amp;CC=EP&amp;NR=3685350A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RAMESH, Nisha</creatorcontrib><creatorcontrib>ATRIA, Cristian</creatorcontrib><creatorcontrib>YATSENKO, Dimitri</creatorcontrib><title>IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS</title><description>A system and method for reconstructing an image of a target object using an iterative reconstruction technique can include a machine learning model as a regularization filter (100). An image data set for a target object generated using an imaging modality can be received, and an image of the target object can be reconstructed using an iterative reconstruction technique that includes a machine learning model as a regularization filter (100) used in part to reconstruct the image of the target object. The machine learning model can be trained prior to receiving the image data using learning datasets that have image data associated with the target object, where the learning datasets providing objective data for training the machine learning model, and the machine learning model can be included in the iterative reconstruction technique to introduce the object features into the image of the target object being reconstructed.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDw9HV0d1UIcnX29wsOCQp1DvH091MIDfb0c1fwdXT28PRzVfBxdQzyAwkEubqH-jgGeUa5BgXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wBjMwtTY1MDR0NjIpQAADwyKHI</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>RAMESH, Nisha</creator><creator>ATRIA, Cristian</creator><creator>YATSENKO, Dimitri</creator><scope>EVB</scope></search><sort><creationdate>20200729</creationdate><title>IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS</title><author>RAMESH, Nisha ; ATRIA, Cristian ; YATSENKO, Dimitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3685350A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>RAMESH, Nisha</creatorcontrib><creatorcontrib>ATRIA, Cristian</creatorcontrib><creatorcontrib>YATSENKO, Dimitri</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RAMESH, Nisha</au><au>ATRIA, Cristian</au><au>YATSENKO, Dimitri</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS</title><date>2020-07-29</date><risdate>2020</risdate><abstract>A system and method for reconstructing an image of a target object using an iterative reconstruction technique can include a machine learning model as a regularization filter (100). An image data set for a target object generated using an imaging modality can be received, and an image of the target object can be reconstructed using an iterative reconstruction technique that includes a machine learning model as a regularization filter (100) used in part to reconstruct the image of the target object. The machine learning model can be trained prior to receiving the image data using learning datasets that have image data associated with the target object, where the learning datasets providing objective data for training the machine learning model, and the machine learning model can be included in the iterative reconstruction technique to introduce the object features into the image of the target object being reconstructed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3685350A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title IMAGE RECONSTRUCTION USING MACHINE LEARNING REGULARIZERS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RAMESH,%20Nisha&rft.date=2020-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3685350A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true