ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM

Accuracy of unsupervised anomalous sound detection is improved using a small number of pieces of anomalous sound data. A threshold deciding part (13) calculates an anomaly score for each of a plurality of pieces of anomalous sound data, using a normal model learned with normal sound data and an anom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KOIZUMI, Yuma, HARADA, Noboru, KAWACHI, Yuta, SAITO, Shoichiro, NAKAGAWA, Akira, MURATA, Shin
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KOIZUMI, Yuma
HARADA, Noboru
KAWACHI, Yuta
SAITO, Shoichiro
NAKAGAWA, Akira
MURATA, Shin
description Accuracy of unsupervised anomalous sound detection is improved using a small number of pieces of anomalous sound data. A threshold deciding part (13) calculates an anomaly score for each of a plurality of pieces of anomalous sound data, using a normal model learned with normal sound data and an anomaly model expressing the pieces of anomalous sound data, and decides a minimum value among the anomaly scores as a threshold. A weight updating part (14) updates, using a plurality of pieces of normal sound data, the pieces of anomalous sound data and the threshold, weights of the anomaly model so that all the pieces of anomalous sound data are judged as anomalous, and probability of the pieces of normal sound data being judged as anomalous is minimized.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3680639B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3680639B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3680639B13</originalsourceid><addsrcrecordid>eNrjZDBzdPLzD_J19PEMiVTw9Xdx9VHwcXUM8vP0c1dwcQ3zdHbVUfB1DfHwd9FRcPRzUQgI8ncPcvTlYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGZhYGZsaWTobGRCgBAKoLJ0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM</title><source>esp@cenet</source><creator>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta ; SAITO, Shoichiro ; NAKAGAWA, Akira ; MURATA, Shin</creator><creatorcontrib>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta ; SAITO, Shoichiro ; NAKAGAWA, Akira ; MURATA, Shin</creatorcontrib><description>Accuracy of unsupervised anomalous sound detection is improved using a small number of pieces of anomalous sound data. A threshold deciding part (13) calculates an anomaly score for each of a plurality of pieces of anomalous sound data, using a normal model learned with normal sound data and an anomaly model expressing the pieces of anomalous sound data, and decides a minimum value among the anomaly scores as a threshold. A weight updating part (14) updates, using a plurality of pieces of normal sound data, the pieces of anomalous sound data and the threshold, weights of the anomaly model so that all the pieces of anomalous sound data are judged as anomalous, and probability of the pieces of normal sound data being judged as anomalous is minimized.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MEASURING ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231115&amp;DB=EPODOC&amp;CC=EP&amp;NR=3680639B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231115&amp;DB=EPODOC&amp;CC=EP&amp;NR=3680639B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOIZUMI, Yuma</creatorcontrib><creatorcontrib>HARADA, Noboru</creatorcontrib><creatorcontrib>KAWACHI, Yuta</creatorcontrib><creatorcontrib>SAITO, Shoichiro</creatorcontrib><creatorcontrib>NAKAGAWA, Akira</creatorcontrib><creatorcontrib>MURATA, Shin</creatorcontrib><title>ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM</title><description>Accuracy of unsupervised anomalous sound detection is improved using a small number of pieces of anomalous sound data. A threshold deciding part (13) calculates an anomaly score for each of a plurality of pieces of anomalous sound data, using a normal model learned with normal sound data and an anomaly model expressing the pieces of anomalous sound data, and decides a minimum value among the anomaly scores as a threshold. A weight updating part (14) updates, using a plurality of pieces of normal sound data, the pieces of anomalous sound data and the threshold, weights of the anomaly model so that all the pieces of anomalous sound data are judged as anomalous, and probability of the pieces of normal sound data being judged as anomalous is minimized.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MEASURING</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBzdPLzD_J19PEMiVTw9Xdx9VHwcXUM8vP0c1dwcQ3zdHbVUfB1DfHwd9FRcPRzUQgI8ncPcvTlYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGZhYGZsaWTobGRCgBAKoLJ0Q</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>KOIZUMI, Yuma</creator><creator>HARADA, Noboru</creator><creator>KAWACHI, Yuta</creator><creator>SAITO, Shoichiro</creator><creator>NAKAGAWA, Akira</creator><creator>MURATA, Shin</creator><scope>EVB</scope></search><sort><creationdate>20231115</creationdate><title>ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM</title><author>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta ; SAITO, Shoichiro ; NAKAGAWA, Akira ; MURATA, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3680639B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MEASURING</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>KOIZUMI, Yuma</creatorcontrib><creatorcontrib>HARADA, Noboru</creatorcontrib><creatorcontrib>KAWACHI, Yuta</creatorcontrib><creatorcontrib>SAITO, Shoichiro</creatorcontrib><creatorcontrib>NAKAGAWA, Akira</creatorcontrib><creatorcontrib>MURATA, Shin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOIZUMI, Yuma</au><au>HARADA, Noboru</au><au>KAWACHI, Yuta</au><au>SAITO, Shoichiro</au><au>NAKAGAWA, Akira</au><au>MURATA, Shin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM</title><date>2023-11-15</date><risdate>2023</risdate><abstract>Accuracy of unsupervised anomalous sound detection is improved using a small number of pieces of anomalous sound data. A threshold deciding part (13) calculates an anomaly score for each of a plurality of pieces of anomalous sound data, using a normal model learned with normal sound data and an anomaly model expressing the pieces of anomalous sound data, and decides a minimum value among the anomaly scores as a threshold. A weight updating part (14) updates, using a plurality of pieces of normal sound data, the pieces of anomalous sound data and the threshold, weights of the anomaly model so that all the pieces of anomalous sound data are judged as anomalous, and probability of the pieces of normal sound data being judged as anomalous is minimized.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3680639B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MEASURING
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title ABNORMALITY MODEL LEARNING DEVICE, METHOD, AND PROGRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOIZUMI,%20Yuma&rft.date=2023-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3680639B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true