SYSTEM AND METHOD FOR CONTENT DISCOVERY

Systems and methods for presenting content to a user are described. A trained neural network is stored in memory, defining input nodes representing respective attribute values of attribute types, and weights embodying strengths of connections between the input nodes and hidden nodes, as trained for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BROMAGE, Matthew, DRISCOLL, Simon, PARMAR, Aarti, LI, Jian, CUMMINGS, Leanne
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BROMAGE, Matthew
DRISCOLL, Simon
PARMAR, Aarti
LI, Jian
CUMMINGS, Leanne
description Systems and methods for presenting content to a user are described. A trained neural network is stored in memory, defining input nodes representing respective attribute values of attribute types, and weights embodying strengths of connections between the input nodes and hidden nodes, as trained for the particular user. Sub-models of the neural network are defined from sets of input nodes of the same attribute type and a corresponding hidden state matrix of trained weights. A request for content assets is processed using a retrieved first sub-model corresponding to a query attribute type and second sub-model corresponding to a target attribute type, to determine relevancy parameters for the user. Content assets are selected for presentation by a media receiver device, based on the determined relevancy parameters. Other embodiments are also described and claimed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3676720A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3676720A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3676720A13</originalsourceid><addsrcrecordid>eNrjZFAPjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScPb3C3H1C1Fw8Qx29g9zDYrkYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGZuZm5kYGjobGRCgBAKfXI4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR CONTENT DISCOVERY</title><source>esp@cenet</source><creator>BROMAGE, Matthew ; DRISCOLL, Simon ; PARMAR, Aarti ; LI, Jian ; CUMMINGS, Leanne</creator><creatorcontrib>BROMAGE, Matthew ; DRISCOLL, Simon ; PARMAR, Aarti ; LI, Jian ; CUMMINGS, Leanne</creatorcontrib><description>Systems and methods for presenting content to a user are described. A trained neural network is stored in memory, defining input nodes representing respective attribute values of attribute types, and weights embodying strengths of connections between the input nodes and hidden nodes, as trained for the particular user. Sub-models of the neural network are defined from sets of input nodes of the same attribute type and a corresponding hidden state matrix of trained weights. A request for content assets is processed using a retrieved first sub-model corresponding to a query attribute type and second sub-model corresponding to a target attribute type, to determine relevancy parameters for the user. Content assets are selected for presentation by a media receiver device, based on the determined relevancy parameters. Other embodiments are also described and claimed.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200708&amp;DB=EPODOC&amp;CC=EP&amp;NR=3676720A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200708&amp;DB=EPODOC&amp;CC=EP&amp;NR=3676720A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BROMAGE, Matthew</creatorcontrib><creatorcontrib>DRISCOLL, Simon</creatorcontrib><creatorcontrib>PARMAR, Aarti</creatorcontrib><creatorcontrib>LI, Jian</creatorcontrib><creatorcontrib>CUMMINGS, Leanne</creatorcontrib><title>SYSTEM AND METHOD FOR CONTENT DISCOVERY</title><description>Systems and methods for presenting content to a user are described. A trained neural network is stored in memory, defining input nodes representing respective attribute values of attribute types, and weights embodying strengths of connections between the input nodes and hidden nodes, as trained for the particular user. Sub-models of the neural network are defined from sets of input nodes of the same attribute type and a corresponding hidden state matrix of trained weights. A request for content assets is processed using a retrieved first sub-model corresponding to a query attribute type and second sub-model corresponding to a target attribute type, to determine relevancy parameters for the user. Content assets are selected for presentation by a media receiver device, based on the determined relevancy parameters. Other embodiments are also described and claimed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAPjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScPb3C3H1C1Fw8Qx29g9zDYrkYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGZuZm5kYGjobGRCgBAKfXI4c</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>BROMAGE, Matthew</creator><creator>DRISCOLL, Simon</creator><creator>PARMAR, Aarti</creator><creator>LI, Jian</creator><creator>CUMMINGS, Leanne</creator><scope>EVB</scope></search><sort><creationdate>20200708</creationdate><title>SYSTEM AND METHOD FOR CONTENT DISCOVERY</title><author>BROMAGE, Matthew ; DRISCOLL, Simon ; PARMAR, Aarti ; LI, Jian ; CUMMINGS, Leanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3676720A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BROMAGE, Matthew</creatorcontrib><creatorcontrib>DRISCOLL, Simon</creatorcontrib><creatorcontrib>PARMAR, Aarti</creatorcontrib><creatorcontrib>LI, Jian</creatorcontrib><creatorcontrib>CUMMINGS, Leanne</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BROMAGE, Matthew</au><au>DRISCOLL, Simon</au><au>PARMAR, Aarti</au><au>LI, Jian</au><au>CUMMINGS, Leanne</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR CONTENT DISCOVERY</title><date>2020-07-08</date><risdate>2020</risdate><abstract>Systems and methods for presenting content to a user are described. A trained neural network is stored in memory, defining input nodes representing respective attribute values of attribute types, and weights embodying strengths of connections between the input nodes and hidden nodes, as trained for the particular user. Sub-models of the neural network are defined from sets of input nodes of the same attribute type and a corresponding hidden state matrix of trained weights. A request for content assets is processed using a retrieved first sub-model corresponding to a query attribute type and second sub-model corresponding to a target attribute type, to determine relevancy parameters for the user. Content assets are selected for presentation by a media receiver device, based on the determined relevancy parameters. Other embodiments are also described and claimed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3676720A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEM AND METHOD FOR CONTENT DISCOVERY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BROMAGE,%20Matthew&rft.date=2020-07-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3676720A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true