TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM

A turbine diagnostic machine learning system builds one or more turbine engine performance models using one or more parameter or parameter characteristics. A model of turbine engine performance includes ranked parameters or parameter characteristics, the ranking of which is calculated by a model bui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AGARWAL, Anurag, GRUBER, Frank, ESCRICHE, Lorenzo, ALLA, Rajesh
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator AGARWAL, Anurag
GRUBER, Frank
ESCRICHE, Lorenzo
ALLA, Rajesh
description A turbine diagnostic machine learning system builds one or more turbine engine performance models using one or more parameter or parameter characteristics. A model of turbine engine performance includes ranked parameters or parameter characteristics, the ranking of which is calculated by a model builder based upon a function of AIC, AUC and p-value, resulting in a corresponding importance rank. These raw parameters and raw parameter characteristics are then sorted according to their importance rank, and selected by a selection component to form one or more completed models. The one or more models are operatively coupled to one or more other models to facilitate further machine learning capabilities by the system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3669244A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3669244A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3669244A43</originalsourceid><addsrcrecordid>eNrjZNAOCQ1y8vRzVXDxdHT38w8O8XRWcHN1BIq6KgS7-rg6h3j6-ykERwaHuPryMLCmJeYUp_JCaW4GoNIQZw_d1IL8-NTigsTk1LzUknjXAGMzM0sjExNHE2MilAAASdEk2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM</title><source>esp@cenet</source><creator>AGARWAL, Anurag ; GRUBER, Frank ; ESCRICHE, Lorenzo ; ALLA, Rajesh</creator><creatorcontrib>AGARWAL, Anurag ; GRUBER, Frank ; ESCRICHE, Lorenzo ; ALLA, Rajesh</creatorcontrib><description>A turbine diagnostic machine learning system builds one or more turbine engine performance models using one or more parameter or parameter characteristics. A model of turbine engine performance includes ranked parameters or parameter characteristics, the ranking of which is calculated by a model builder based upon a function of AIC, AUC and p-value, resulting in a corresponding importance rank. These raw parameters and raw parameter characteristics are then sorted according to their importance rank, and selected by a selection component to form one or more completed models. The one or more models are operatively coupled to one or more other models to facilitate further machine learning capabilities by the system.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=EP&amp;NR=3669244A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=EP&amp;NR=3669244A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AGARWAL, Anurag</creatorcontrib><creatorcontrib>GRUBER, Frank</creatorcontrib><creatorcontrib>ESCRICHE, Lorenzo</creatorcontrib><creatorcontrib>ALLA, Rajesh</creatorcontrib><title>TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM</title><description>A turbine diagnostic machine learning system builds one or more turbine engine performance models using one or more parameter or parameter characteristics. A model of turbine engine performance includes ranked parameters or parameter characteristics, the ranking of which is calculated by a model builder based upon a function of AIC, AUC and p-value, resulting in a corresponding importance rank. These raw parameters and raw parameter characteristics are then sorted according to their importance rank, and selected by a selection component to form one or more completed models. The one or more models are operatively coupled to one or more other models to facilitate further machine learning capabilities by the system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAOCQ1y8vRzVXDxdHT38w8O8XRWcHN1BIq6KgS7-rg6h3j6-ykERwaHuPryMLCmJeYUp_JCaW4GoNIQZw_d1IL8-NTigsTk1LzUknjXAGMzM0sjExNHE2MilAAASdEk2Q</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>AGARWAL, Anurag</creator><creator>GRUBER, Frank</creator><creator>ESCRICHE, Lorenzo</creator><creator>ALLA, Rajesh</creator><scope>EVB</scope></search><sort><creationdate>20210519</creationdate><title>TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM</title><author>AGARWAL, Anurag ; GRUBER, Frank ; ESCRICHE, Lorenzo ; ALLA, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3669244A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>AGARWAL, Anurag</creatorcontrib><creatorcontrib>GRUBER, Frank</creatorcontrib><creatorcontrib>ESCRICHE, Lorenzo</creatorcontrib><creatorcontrib>ALLA, Rajesh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AGARWAL, Anurag</au><au>GRUBER, Frank</au><au>ESCRICHE, Lorenzo</au><au>ALLA, Rajesh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM</title><date>2021-05-19</date><risdate>2021</risdate><abstract>A turbine diagnostic machine learning system builds one or more turbine engine performance models using one or more parameter or parameter characteristics. A model of turbine engine performance includes ranked parameters or parameter characteristics, the ranking of which is calculated by a model builder based upon a function of AIC, AUC and p-value, resulting in a corresponding importance rank. These raw parameters and raw parameter characteristics are then sorted according to their importance rank, and selected by a selection component to form one or more completed models. The one or more models are operatively coupled to one or more other models to facilitate further machine learning capabilities by the system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3669244A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title TURBINE DIAGNOSTIC FEATURE SELECTION SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AGARWAL,%20Anurag&rft.date=2021-05-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3669244A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true