VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION

Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DOUILLARD, Bertrand Robert, ANGUELOV, Dragomir Dimitrov, WANG, Zeng, DAS, Subhasis, LEVINSON, Jesse Sol
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DOUILLARD, Bertrand Robert
ANGUELOV, Dragomir Dimitrov
WANG, Zeng
DAS, Subhasis
LEVINSON, Jesse Sol
description Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3639241B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3639241B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3639241B13</originalsourceid><addsrcrecordid>eNrjZLAO849w9VFwcgx2dVFwD_IP9XNRCPBx9HNVcA0O8fR1DPH091NwBAr6O3m5OocoBLu6-7r6hYDFeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnJqXmpJvGuAsZmxpZGJoZOhMRFKAImCKOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION</title><source>esp@cenet</source><creator>DOUILLARD, Bertrand Robert ; ANGUELOV, Dragomir Dimitrov ; WANG, Zeng ; DAS, Subhasis ; LEVINSON, Jesse Sol</creator><creatorcontrib>DOUILLARD, Bertrand Robert ; ANGUELOV, Dragomir Dimitrov ; WANG, Zeng ; DAS, Subhasis ; LEVINSON, Jesse Sol</creatorcontrib><description>Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231115&amp;DB=EPODOC&amp;CC=EP&amp;NR=3639241B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231115&amp;DB=EPODOC&amp;CC=EP&amp;NR=3639241B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DOUILLARD, Bertrand Robert</creatorcontrib><creatorcontrib>ANGUELOV, Dragomir Dimitrov</creatorcontrib><creatorcontrib>WANG, Zeng</creatorcontrib><creatorcontrib>DAS, Subhasis</creatorcontrib><creatorcontrib>LEVINSON, Jesse Sol</creatorcontrib><title>VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION</title><description>Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAO849w9VFwcgx2dVFwD_IP9XNRCPBx9HNVcA0O8fR1DPH091NwBAr6O3m5OocoBLu6-7r6hYDFeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnJqXmpJvGuAsZmxpZGJoZOhMRFKAImCKOU</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>DOUILLARD, Bertrand Robert</creator><creator>ANGUELOV, Dragomir Dimitrov</creator><creator>WANG, Zeng</creator><creator>DAS, Subhasis</creator><creator>LEVINSON, Jesse Sol</creator><scope>EVB</scope></search><sort><creationdate>20231115</creationdate><title>VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION</title><author>DOUILLARD, Bertrand Robert ; ANGUELOV, Dragomir Dimitrov ; WANG, Zeng ; DAS, Subhasis ; LEVINSON, Jesse Sol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3639241B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DOUILLARD, Bertrand Robert</creatorcontrib><creatorcontrib>ANGUELOV, Dragomir Dimitrov</creatorcontrib><creatorcontrib>WANG, Zeng</creatorcontrib><creatorcontrib>DAS, Subhasis</creatorcontrib><creatorcontrib>LEVINSON, Jesse Sol</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DOUILLARD, Bertrand Robert</au><au>ANGUELOV, Dragomir Dimitrov</au><au>WANG, Zeng</au><au>DAS, Subhasis</au><au>LEVINSON, Jesse Sol</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION</title><date>2023-11-15</date><risdate>2023</risdate><abstract>Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3639241B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title VOXEL BASED GROUND PLANE ESTIMATION AND OBJECT SEGMENTATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DOUILLARD,%20Bertrand%20Robert&rft.date=2023-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3639241B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true