COLLISION HANDLING BY A ROBOT

The invention relates to a method of collision handling for a robot with a kinematic chain structure comprising at least one kinematic chain, wherein the kinematic chain structure includes: a base, links, joints connecting the links, actuators and at least one end-effector, a sensor Sdistal.i in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: VORNDAMME, Jonathan, HADDADIN, Sami
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator VORNDAMME, Jonathan
HADDADIN, Sami
description The invention relates to a method of collision handling for a robot with a kinematic chain structure comprising at least one kinematic chain, wherein the kinematic chain structure includes: a base, links, joints connecting the links, actuators and at least one end-effector, a sensor Sdistal.i in the most distal link of at least one of the kinematic chains for measuring/estimating force/torque, and sensors Si for measuring/estimating proprioceptive data, wherein the sensors Si are arbitrarily positioned along the kinematic chain structure, the method including: providing a model describing the dynamics of the robot; measuring and/or estimating with sensor Sdistal.i force/torque Fext,S.distal.i in the most distal link of at least one of the kinematic chains; measuring and/or estimating with the sensors Si proprioceptive data: base and robot generalized coordinates q(t) and their time derivative {dot over (q)}(t), generalized joint motor forces τm, external forces FS, a base orientation φB(t) and a base velocity {dot over (x)}(t)B; generating an estimate {circumflex over (τ)}∈ of the generalized external forces τext with a momentum observer based on at least one of the proprioceptive data and the model; generating an estimate {umlaut over ({circumflex over (q)})}(t) of a second derivative of base and robot generalized coordinates {umlaut over (q)}(t), based on {circumflex over (τ)}∈ and τm; estimating a Cartesian acceleration {umlaut over ({circumflex over (x)})}D of point D on the kinematic chain structure based on {umlaut over ({circumflex over (q)})}(t); compensating the external forces FD for rigid body dynamics effects based on {umlaut over ({circumflex over (x)})}D and for gravity effects to obtain an estimated external wrench {circumflex over (F)}ext,S.i; compensating {circumflex over (τ)}∈ for the Jacobian JS.distal.iT transformed Fext,S.distal.i to obtain an estimation {circumflex over (τ)}ext,col of generalized joint forces originating from unexpected collisions; detecting a collision based on given thresholds τthresh and FS.i,thresh if {circumflex over (τ)}ext,col>τthresh and/or if {circumflex over (F)}ext,S.i>FS.i,thresh.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3634695A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3634695A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3634695A13</originalsourceid><addsrcrecordid>eNrjZJB19vfx8Qz29PdT8HD0c_Hx9HNXcIpUcFQI8nfyD-FhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAcZmxiZmlqaOhsZEKAEAQUAghw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COLLISION HANDLING BY A ROBOT</title><source>esp@cenet</source><creator>VORNDAMME, Jonathan ; HADDADIN, Sami</creator><creatorcontrib>VORNDAMME, Jonathan ; HADDADIN, Sami</creatorcontrib><description>The invention relates to a method of collision handling for a robot with a kinematic chain structure comprising at least one kinematic chain, wherein the kinematic chain structure includes: a base, links, joints connecting the links, actuators and at least one end-effector, a sensor Sdistal.i in the most distal link of at least one of the kinematic chains for measuring/estimating force/torque, and sensors Si for measuring/estimating proprioceptive data, wherein the sensors Si are arbitrarily positioned along the kinematic chain structure, the method including: providing a model describing the dynamics of the robot; measuring and/or estimating with sensor Sdistal.i force/torque Fext,S.distal.i in the most distal link of at least one of the kinematic chains; measuring and/or estimating with the sensors Si proprioceptive data: base and robot generalized coordinates q(t) and their time derivative {dot over (q)}(t), generalized joint motor forces τm, external forces FS, a base orientation φB(t) and a base velocity {dot over (x)}(t)B; generating an estimate {circumflex over (τ)}∈ of the generalized external forces τext with a momentum observer based on at least one of the proprioceptive data and the model; generating an estimate {umlaut over ({circumflex over (q)})}(t) of a second derivative of base and robot generalized coordinates {umlaut over (q)}(t), based on {circumflex over (τ)}∈ and τm; estimating a Cartesian acceleration {umlaut over ({circumflex over (x)})}D of point D on the kinematic chain structure based on {umlaut over ({circumflex over (q)})}(t); compensating the external forces FD for rigid body dynamics effects based on {umlaut over ({circumflex over (x)})}D and for gravity effects to obtain an estimated external wrench {circumflex over (F)}ext,S.i; compensating {circumflex over (τ)}∈ for the Jacobian JS.distal.iT transformed Fext,S.distal.i to obtain an estimation {circumflex over (τ)}ext,col of generalized joint forces originating from unexpected collisions; detecting a collision based on given thresholds τthresh and FS.i,thresh if {circumflex over (τ)}ext,col&gt;τthresh and/or if {circumflex over (F)}ext,S.i&gt;FS.i,thresh.</description><language>eng ; fre ; ger</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200415&amp;DB=EPODOC&amp;CC=EP&amp;NR=3634695A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200415&amp;DB=EPODOC&amp;CC=EP&amp;NR=3634695A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VORNDAMME, Jonathan</creatorcontrib><creatorcontrib>HADDADIN, Sami</creatorcontrib><title>COLLISION HANDLING BY A ROBOT</title><description>The invention relates to a method of collision handling for a robot with a kinematic chain structure comprising at least one kinematic chain, wherein the kinematic chain structure includes: a base, links, joints connecting the links, actuators and at least one end-effector, a sensor Sdistal.i in the most distal link of at least one of the kinematic chains for measuring/estimating force/torque, and sensors Si for measuring/estimating proprioceptive data, wherein the sensors Si are arbitrarily positioned along the kinematic chain structure, the method including: providing a model describing the dynamics of the robot; measuring and/or estimating with sensor Sdistal.i force/torque Fext,S.distal.i in the most distal link of at least one of the kinematic chains; measuring and/or estimating with the sensors Si proprioceptive data: base and robot generalized coordinates q(t) and their time derivative {dot over (q)}(t), generalized joint motor forces τm, external forces FS, a base orientation φB(t) and a base velocity {dot over (x)}(t)B; generating an estimate {circumflex over (τ)}∈ of the generalized external forces τext with a momentum observer based on at least one of the proprioceptive data and the model; generating an estimate {umlaut over ({circumflex over (q)})}(t) of a second derivative of base and robot generalized coordinates {umlaut over (q)}(t), based on {circumflex over (τ)}∈ and τm; estimating a Cartesian acceleration {umlaut over ({circumflex over (x)})}D of point D on the kinematic chain structure based on {umlaut over ({circumflex over (q)})}(t); compensating the external forces FD for rigid body dynamics effects based on {umlaut over ({circumflex over (x)})}D and for gravity effects to obtain an estimated external wrench {circumflex over (F)}ext,S.i; compensating {circumflex over (τ)}∈ for the Jacobian JS.distal.iT transformed Fext,S.distal.i to obtain an estimation {circumflex over (τ)}ext,col of generalized joint forces originating from unexpected collisions; detecting a collision based on given thresholds τthresh and FS.i,thresh if {circumflex over (τ)}ext,col&gt;τthresh and/or if {circumflex over (F)}ext,S.i&gt;FS.i,thresh.</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB19vfx8Qz29PdT8HD0c_Hx9HNXcIpUcFQI8nfyD-FhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAcZmxiZmlqaOhsZEKAEAQUAghw</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>VORNDAMME, Jonathan</creator><creator>HADDADIN, Sami</creator><scope>EVB</scope></search><sort><creationdate>20200415</creationdate><title>COLLISION HANDLING BY A ROBOT</title><author>VORNDAMME, Jonathan ; HADDADIN, Sami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3634695A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>VORNDAMME, Jonathan</creatorcontrib><creatorcontrib>HADDADIN, Sami</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VORNDAMME, Jonathan</au><au>HADDADIN, Sami</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COLLISION HANDLING BY A ROBOT</title><date>2020-04-15</date><risdate>2020</risdate><abstract>The invention relates to a method of collision handling for a robot with a kinematic chain structure comprising at least one kinematic chain, wherein the kinematic chain structure includes: a base, links, joints connecting the links, actuators and at least one end-effector, a sensor Sdistal.i in the most distal link of at least one of the kinematic chains for measuring/estimating force/torque, and sensors Si for measuring/estimating proprioceptive data, wherein the sensors Si are arbitrarily positioned along the kinematic chain structure, the method including: providing a model describing the dynamics of the robot; measuring and/or estimating with sensor Sdistal.i force/torque Fext,S.distal.i in the most distal link of at least one of the kinematic chains; measuring and/or estimating with the sensors Si proprioceptive data: base and robot generalized coordinates q(t) and their time derivative {dot over (q)}(t), generalized joint motor forces τm, external forces FS, a base orientation φB(t) and a base velocity {dot over (x)}(t)B; generating an estimate {circumflex over (τ)}∈ of the generalized external forces τext with a momentum observer based on at least one of the proprioceptive data and the model; generating an estimate {umlaut over ({circumflex over (q)})}(t) of a second derivative of base and robot generalized coordinates {umlaut over (q)}(t), based on {circumflex over (τ)}∈ and τm; estimating a Cartesian acceleration {umlaut over ({circumflex over (x)})}D of point D on the kinematic chain structure based on {umlaut over ({circumflex over (q)})}(t); compensating the external forces FD for rigid body dynamics effects based on {umlaut over ({circumflex over (x)})}D and for gravity effects to obtain an estimated external wrench {circumflex over (F)}ext,S.i; compensating {circumflex over (τ)}∈ for the Jacobian JS.distal.iT transformed Fext,S.distal.i to obtain an estimation {circumflex over (τ)}ext,col of generalized joint forces originating from unexpected collisions; detecting a collision based on given thresholds τthresh and FS.i,thresh if {circumflex over (τ)}ext,col&gt;τthresh and/or if {circumflex over (F)}ext,S.i&gt;FS.i,thresh.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3634695A1
source esp@cenet
subjects CHAMBERS PROVIDED WITH MANIPULATION DEVICES
HAND TOOLS
MANIPULATORS
PERFORMING OPERATIONS
PORTABLE POWER-DRIVEN TOOLS
TRANSPORTING
title COLLISION HANDLING BY A ROBOT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VORNDAMME,%20Jonathan&rft.date=2020-04-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3634695A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true