FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS
5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | THOMAS, Timothy, A OGBE, Dennis GHOSH, Amitabha VENUGOPAL, Kiran |
description | 5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarrier separation but smaller symbol duration (In the case of beamforming reference signals, it would enable to train K beams in one symbol time period). Receiver issues: Embodiment 1 uses different Rx chains for data and control channels with different FFT sizes (size differing by factor K). Embodiment 2 uses a common identical FFT size (the one of the data channel) for both control and data: For the control channel, either repeat each control symbol K times prior to FFT and performs down-sampling afterwards and repeat it for each control symbol, or performs joint processing and FFT for all K control symbols jointly by either time domain linear combination or post FFT frequency processing. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3616375B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3616375B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3616375B13</originalsourceid><addsrcrecordid>eNqNysEKgkAQgGEvHaJ6h3kBDyLZedyd1Tm4a7Nj0Ukk1lOUYO9PBD1Ap58P_m02O6HzQN7cchs6ZA8q6GPHqiQR0FsQMsSXr64tmxbQYq-gASw7R0JeIQ61QREmgdijYd-ACd5xMwgqBx_32WaeHms6_LrLwJGaNk_La0zrMt3TM71H6suqqMrTsS7KP5YPkso1MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS</title><source>esp@cenet</source><creator>THOMAS, Timothy, A ; OGBE, Dennis ; GHOSH, Amitabha ; VENUGOPAL, Kiran</creator><creatorcontrib>THOMAS, Timothy, A ; OGBE, Dennis ; GHOSH, Amitabha ; VENUGOPAL, Kiran</creatorcontrib><description>5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarrier separation but smaller symbol duration (In the case of beamforming reference signals, it would enable to train K beams in one symbol time period). Receiver issues: Embodiment 1 uses different Rx chains for data and control channels with different FFT sizes (size differing by factor K). Embodiment 2 uses a common identical FFT size (the one of the data channel) for both control and data: For the control channel, either repeat each control symbol K times prior to FFT and performs down-sampling afterwards and repeat it for each control symbol, or performs joint processing and FFT for all K control symbols jointly by either time domain linear combination or post FFT frequency processing.</description><language>eng ; fre ; ger</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241120&DB=EPODOC&CC=EP&NR=3616375B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241120&DB=EPODOC&CC=EP&NR=3616375B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>THOMAS, Timothy, A</creatorcontrib><creatorcontrib>OGBE, Dennis</creatorcontrib><creatorcontrib>GHOSH, Amitabha</creatorcontrib><creatorcontrib>VENUGOPAL, Kiran</creatorcontrib><title>FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS</title><description>5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarrier separation but smaller symbol duration (In the case of beamforming reference signals, it would enable to train K beams in one symbol time period). Receiver issues: Embodiment 1 uses different Rx chains for data and control channels with different FFT sizes (size differing by factor K). Embodiment 2 uses a common identical FFT size (the one of the data channel) for both control and data: For the control channel, either repeat each control symbol K times prior to FFT and performs down-sampling afterwards and repeat it for each control symbol, or performs joint processing and FFT for all K control symbols jointly by either time domain linear combination or post FFT frequency processing.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNysEKgkAQgGEvHaJ6h3kBDyLZedyd1Tm4a7Nj0Ukk1lOUYO9PBD1Ap58P_m02O6HzQN7cchs6ZA8q6GPHqiQR0FsQMsSXr64tmxbQYq-gASw7R0JeIQ61QREmgdijYd-ACd5xMwgqBx_32WaeHms6_LrLwJGaNk_La0zrMt3TM71H6suqqMrTsS7KP5YPkso1MA</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>THOMAS, Timothy, A</creator><creator>OGBE, Dennis</creator><creator>GHOSH, Amitabha</creator><creator>VENUGOPAL, Kiran</creator><scope>EVB</scope></search><sort><creationdate>20241120</creationdate><title>FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS</title><author>THOMAS, Timothy, A ; OGBE, Dennis ; GHOSH, Amitabha ; VENUGOPAL, Kiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3616375B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>THOMAS, Timothy, A</creatorcontrib><creatorcontrib>OGBE, Dennis</creatorcontrib><creatorcontrib>GHOSH, Amitabha</creatorcontrib><creatorcontrib>VENUGOPAL, Kiran</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>THOMAS, Timothy, A</au><au>OGBE, Dennis</au><au>GHOSH, Amitabha</au><au>VENUGOPAL, Kiran</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS</title><date>2024-11-20</date><risdate>2024</risdate><abstract>5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarrier separation but smaller symbol duration (In the case of beamforming reference signals, it would enable to train K beams in one symbol time period). Receiver issues: Embodiment 1 uses different Rx chains for data and control channels with different FFT sizes (size differing by factor K). Embodiment 2 uses a common identical FFT size (the one of the data channel) for both control and data: For the control channel, either repeat each control symbol K times prior to FFT and performs down-sampling afterwards and repeat it for each control symbol, or performs joint processing and FFT for all K control symbols jointly by either time domain linear combination or post FFT frequency processing.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3616375B1 |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | FREQUENCY-DOMAIN TRANSMITTERS AND RECEIVERS WHICH ADAPT TO DIFFERENT SUBCARRIER SPACING CONFIGURATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=THOMAS,%20Timothy,%20A&rft.date=2024-11-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3616375B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |