ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS

Anomaly detection in computing environments is disclosed herein. An example method includes receiving an unstructured input stream of data instances from the computing environment, the unstructured input stream being time stamped; categorizing the data instances of the unstructured input stream of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DODSON, Stephen, ROBERTS, David Mark, VEASEY, Thomas
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DODSON, Stephen
ROBERTS, David Mark
VEASEY, Thomas
description Anomaly detection in computing environments is disclosed herein. An example method includes receiving an unstructured input stream of data instances from the computing environment, the unstructured input stream being time stamped; categorizing the data instances of the unstructured input stream of data instances, the data instances comprising at least one principle value and a set of categorical attributes determined through machine learning; generating anomaly scores for each of the data instances collected over a period of time; and detecting a change in the categorical attribute that is indicative of an anomaly.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3616096A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3616096A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3616096A43</originalsourceid><addsrcrecordid>eNrjZLB09PP3dfSJVHD0c1FwdgwNdgzx9PdTcHENcXUGszz9FJz9fQNCQzz93BVc_cI8g_z9fF39QoJ5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmaGZgaWZo4kxEUoAVRooqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS</title><source>esp@cenet</source><creator>DODSON, Stephen ; ROBERTS, David Mark ; VEASEY, Thomas</creator><creatorcontrib>DODSON, Stephen ; ROBERTS, David Mark ; VEASEY, Thomas</creatorcontrib><description>Anomaly detection in computing environments is disclosed herein. An example method includes receiving an unstructured input stream of data instances from the computing environment, the unstructured input stream being time stamped; categorizing the data instances of the unstructured input stream of data instances, the data instances comprising at least one principle value and a set of categorical attributes determined through machine learning; generating anomaly scores for each of the data instances collected over a period of time; and detecting a change in the categorical attribute that is indicative of an anomaly.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201014&amp;DB=EPODOC&amp;CC=EP&amp;NR=3616096A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201014&amp;DB=EPODOC&amp;CC=EP&amp;NR=3616096A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DODSON, Stephen</creatorcontrib><creatorcontrib>ROBERTS, David Mark</creatorcontrib><creatorcontrib>VEASEY, Thomas</creatorcontrib><title>ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS</title><description>Anomaly detection in computing environments is disclosed herein. An example method includes receiving an unstructured input stream of data instances from the computing environment, the unstructured input stream being time stamped; categorizing the data instances of the unstructured input stream of data instances, the data instances comprising at least one principle value and a set of categorical attributes determined through machine learning; generating anomaly scores for each of the data instances collected over a period of time; and detecting a change in the categorical attribute that is indicative of an anomaly.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB09PP3dfSJVHD0c1FwdgwNdgzx9PdTcHENcXUGszz9FJz9fQNCQzz93BVc_cI8g_z9fF39QoJ5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmaGZgaWZo4kxEUoAVRooqw</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>DODSON, Stephen</creator><creator>ROBERTS, David Mark</creator><creator>VEASEY, Thomas</creator><scope>EVB</scope></search><sort><creationdate>20201014</creationdate><title>ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS</title><author>DODSON, Stephen ; ROBERTS, David Mark ; VEASEY, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3616096A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>DODSON, Stephen</creatorcontrib><creatorcontrib>ROBERTS, David Mark</creatorcontrib><creatorcontrib>VEASEY, Thomas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DODSON, Stephen</au><au>ROBERTS, David Mark</au><au>VEASEY, Thomas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS</title><date>2020-10-14</date><risdate>2020</risdate><abstract>Anomaly detection in computing environments is disclosed herein. An example method includes receiving an unstructured input stream of data instances from the computing environment, the unstructured input stream being time stamped; categorizing the data instances of the unstructured input stream of data instances, the data instances comprising at least one principle value and a set of categorical attributes determined through machine learning; generating anomaly scores for each of the data instances collected over a period of time; and detecting a change in the categorical attribute that is indicative of an anomaly.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3616096A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title ANOMALY AND CAUSATION DETECTION IN COMPUTING ENVIRONMENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DODSON,%20Stephen&rft.date=2020-10-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3616096A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true