REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS
A deep neural network ("DNN") module compresses and decompresses neuron-generated activation data to reduce the utilization of memory bus bandwidth. The compression unit receives an uncompressed chunk of data generated by a neuron in the DNN module. The compression unit generates a mask po...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | AMBARDEKAR, Amol Ashok CEDOLA, Kent D MCBRIDE, Chad Balling BOBROV, Boris PETRE, George WALL, Larry Marvin |
description | A deep neural network ("DNN") module compresses and decompresses neuron-generated activation data to reduce the utilization of memory bus bandwidth. The compression unit receives an uncompressed chunk of data generated by a neuron in the DNN module. The compression unit generates a mask portion and a data portion of a compressed output chunk. The mask portion encodes the presence and location of the zero and non-zero bytes in the uncompressed chunk of data. The data portion stores truncated non-zero bytes from the uncompressed chunk of data. A decompression unit receives a compressed chunk of data from memory in the DNN processor or memory of an application host. The decompression unit decompresses the compressed chunk of data using the mask portion and the data portion. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3612936B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3612936B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3612936B13</originalsourceid><addsrcrecordid>eNrjZIgKcnUJdfb0c1cI8A93DVJw9vcLDvUNCPH091Pw9FNwVPBzDQ1y9AFSIeH-Qd4KAUH-zq7Bwf5BCk6RCsHengEBYL0QURDTP8A1yBGkPZiHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGRpZGps5GRoToQQAP-syDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS</title><source>esp@cenet</source><creator>AMBARDEKAR, Amol Ashok ; CEDOLA, Kent D ; MCBRIDE, Chad Balling ; BOBROV, Boris ; PETRE, George ; WALL, Larry Marvin</creator><creatorcontrib>AMBARDEKAR, Amol Ashok ; CEDOLA, Kent D ; MCBRIDE, Chad Balling ; BOBROV, Boris ; PETRE, George ; WALL, Larry Marvin</creatorcontrib><description>A deep neural network ("DNN") module compresses and decompresses neuron-generated activation data to reduce the utilization of memory bus bandwidth. The compression unit receives an uncompressed chunk of data generated by a neuron in the DNN module. The compression unit generates a mask portion and a data portion of a compressed output chunk. The mask portion encodes the presence and location of the zero and non-zero bytes in the uncompressed chunk of data. The data portion stores truncated non-zero bytes from the uncompressed chunk of data. A decompression unit receives a compressed chunk of data from memory in the DNN processor or memory of an application host. The decompression unit decompresses the compressed chunk of data using the mask portion and the data portion.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231018&DB=EPODOC&CC=EP&NR=3612936B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231018&DB=EPODOC&CC=EP&NR=3612936B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AMBARDEKAR, Amol Ashok</creatorcontrib><creatorcontrib>CEDOLA, Kent D</creatorcontrib><creatorcontrib>MCBRIDE, Chad Balling</creatorcontrib><creatorcontrib>BOBROV, Boris</creatorcontrib><creatorcontrib>PETRE, George</creatorcontrib><creatorcontrib>WALL, Larry Marvin</creatorcontrib><title>REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS</title><description>A deep neural network ("DNN") module compresses and decompresses neuron-generated activation data to reduce the utilization of memory bus bandwidth. The compression unit receives an uncompressed chunk of data generated by a neuron in the DNN module. The compression unit generates a mask portion and a data portion of a compressed output chunk. The mask portion encodes the presence and location of the zero and non-zero bytes in the uncompressed chunk of data. The data portion stores truncated non-zero bytes from the uncompressed chunk of data. A decompression unit receives a compressed chunk of data from memory in the DNN processor or memory of an application host. The decompression unit decompresses the compressed chunk of data using the mask portion and the data portion.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgKcnUJdfb0c1cI8A93DVJw9vcLDvUNCPH091Pw9FNwVPBzDQ1y9AFSIeH-Qd4KAUH-zq7Bwf5BCk6RCsHengEBYL0QURDTP8A1yBGkPZiHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGRpZGps5GRoToQQAP-syDg</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>AMBARDEKAR, Amol Ashok</creator><creator>CEDOLA, Kent D</creator><creator>MCBRIDE, Chad Balling</creator><creator>BOBROV, Boris</creator><creator>PETRE, George</creator><creator>WALL, Larry Marvin</creator><scope>EVB</scope></search><sort><creationdate>20231018</creationdate><title>REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS</title><author>AMBARDEKAR, Amol Ashok ; CEDOLA, Kent D ; MCBRIDE, Chad Balling ; BOBROV, Boris ; PETRE, George ; WALL, Larry Marvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3612936B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>AMBARDEKAR, Amol Ashok</creatorcontrib><creatorcontrib>CEDOLA, Kent D</creatorcontrib><creatorcontrib>MCBRIDE, Chad Balling</creatorcontrib><creatorcontrib>BOBROV, Boris</creatorcontrib><creatorcontrib>PETRE, George</creatorcontrib><creatorcontrib>WALL, Larry Marvin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AMBARDEKAR, Amol Ashok</au><au>CEDOLA, Kent D</au><au>MCBRIDE, Chad Balling</au><au>BOBROV, Boris</au><au>PETRE, George</au><au>WALL, Larry Marvin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS</title><date>2023-10-18</date><risdate>2023</risdate><abstract>A deep neural network ("DNN") module compresses and decompresses neuron-generated activation data to reduce the utilization of memory bus bandwidth. The compression unit receives an uncompressed chunk of data generated by a neuron in the DNN module. The compression unit generates a mask portion and a data portion of a compressed output chunk. The mask portion encodes the presence and location of the zero and non-zero bytes in the uncompressed chunk of data. The data portion stores truncated non-zero bytes from the uncompressed chunk of data. A decompression unit receives a compressed chunk of data from memory in the DNN processor or memory of an application host. The decompression unit decompresses the compressed chunk of data using the mask portion and the data portion.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3612936B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | REDUCING POWER CONSUMPTION IN A NEURAL NETWORK PROCESSOR BY SKIPPING PROCESSING OPERATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AMBARDEKAR,%20Amol%20Ashok&rft.date=2023-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3612936B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |