COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER
An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section enclosed in a housing and a direct evaporative heat exchange section both of which are located within the same apparatus. An internal fluid stream is passed through the internal passageways of the indi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHIN, Yoon, K AARON, David, Andrew |
description | An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section enclosed in a housing and a direct evaporative heat exchange section both of which are located within the same apparatus. An internal fluid stream is passed through the internal passageways of the indirect heat exchange section. An evaporative liquid is passed across the outside of the external passageways of the indirect heat exchange section to exchange heat indirectly with the internal fluid stream. The evaporative liquid that exits the indirect evaporative heat exchange section housing then passes onto and through the direct heat exchange section. The evaporative liquid exiting the direct heat exchange section is collected in a sump and then pumped upwardly to be distributed again through the indirect heat exchange section housing. The indirect heat exchange section may be comprised of a plate type heat exchanger or a circuit tube type heat exchanger located within a housing. The indirect heat exchange housing may be in direct contact with the air moving through the direct heat exchange section, be in direct contact with the cool evaporative liquid, or both, to enhance the heat transfer from the indirect heat exchange section. Air may be pumped along with the evaporative liquid through the indirect heat exchange section to agitate and increase the velocity of evaporative fluid flowing through the indirect heat exchanger. Air may also be pumped into and through the indirect eat exchange section housing when the evaporative fluid pump is off during a dry mode of operation. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3601920A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3601920A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3601920A43</originalsourceid><addsrcrecordid>eNrjZDB19vf38fRzVwjxD3cNUgj3DPFQcPEMcnUOUXD0c1Hw9INyPFwdQxRcI5w9HP3cXYN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmYGhpZGBo4kxEUoAiuYnAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER</title><source>esp@cenet</source><creator>SHIN, Yoon, K ; AARON, David, Andrew</creator><creatorcontrib>SHIN, Yoon, K ; AARON, David, Andrew</creatorcontrib><description>An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section enclosed in a housing and a direct evaporative heat exchange section both of which are located within the same apparatus. An internal fluid stream is passed through the internal passageways of the indirect heat exchange section. An evaporative liquid is passed across the outside of the external passageways of the indirect heat exchange section to exchange heat indirectly with the internal fluid stream. The evaporative liquid that exits the indirect evaporative heat exchange section housing then passes onto and through the direct heat exchange section. The evaporative liquid exiting the direct heat exchange section is collected in a sump and then pumped upwardly to be distributed again through the indirect heat exchange section housing. The indirect heat exchange section may be comprised of a plate type heat exchanger or a circuit tube type heat exchanger located within a housing. The indirect heat exchange housing may be in direct contact with the air moving through the direct heat exchange section, be in direct contact with the cool evaporative liquid, or both, to enhance the heat transfer from the indirect heat exchange section. Air may be pumped along with the evaporative liquid through the indirect heat exchange section to agitate and increase the velocity of evaporative fluid flowing through the indirect heat exchanger. Air may also be pumped into and through the indirect eat exchange section housing when the evaporative fluid pump is off during a dry mode of operation.</description><language>eng ; fre ; ger</language><subject>BLASTING ; DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OFGENERAL APPLICATION ; HEAT EXCHANGE IN GENERAL ; HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION ; HEATING ; LIGHTING ; MECHANICAL ENGINEERING ; WEAPONS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201209&DB=EPODOC&CC=EP&NR=3601920A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201209&DB=EPODOC&CC=EP&NR=3601920A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHIN, Yoon, K</creatorcontrib><creatorcontrib>AARON, David, Andrew</creatorcontrib><title>COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER</title><description>An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section enclosed in a housing and a direct evaporative heat exchange section both of which are located within the same apparatus. An internal fluid stream is passed through the internal passageways of the indirect heat exchange section. An evaporative liquid is passed across the outside of the external passageways of the indirect heat exchange section to exchange heat indirectly with the internal fluid stream. The evaporative liquid that exits the indirect evaporative heat exchange section housing then passes onto and through the direct heat exchange section. The evaporative liquid exiting the direct heat exchange section is collected in a sump and then pumped upwardly to be distributed again through the indirect heat exchange section housing. The indirect heat exchange section may be comprised of a plate type heat exchanger or a circuit tube type heat exchanger located within a housing. The indirect heat exchange housing may be in direct contact with the air moving through the direct heat exchange section, be in direct contact with the cool evaporative liquid, or both, to enhance the heat transfer from the indirect heat exchange section. Air may be pumped along with the evaporative liquid through the indirect heat exchange section to agitate and increase the velocity of evaporative fluid flowing through the indirect heat exchanger. Air may also be pumped into and through the indirect eat exchange section housing when the evaporative fluid pump is off during a dry mode of operation.</description><subject>BLASTING</subject><subject>DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OFGENERAL APPLICATION</subject><subject>HEAT EXCHANGE IN GENERAL</subject><subject>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB19vf38fRzVwjxD3cNUgj3DPFQcPEMcnUOUXD0c1Hw9INyPFwdQxRcI5w9HP3cXYN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxmYGhpZGBo4kxEUoAiuYnAw</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>SHIN, Yoon, K</creator><creator>AARON, David, Andrew</creator><scope>EVB</scope></search><sort><creationdate>20201209</creationdate><title>COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER</title><author>SHIN, Yoon, K ; AARON, David, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3601920A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>BLASTING</topic><topic>DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OFGENERAL APPLICATION</topic><topic>HEAT EXCHANGE IN GENERAL</topic><topic>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHIN, Yoon, K</creatorcontrib><creatorcontrib>AARON, David, Andrew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHIN, Yoon, K</au><au>AARON, David, Andrew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER</title><date>2020-12-09</date><risdate>2020</risdate><abstract>An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section enclosed in a housing and a direct evaporative heat exchange section both of which are located within the same apparatus. An internal fluid stream is passed through the internal passageways of the indirect heat exchange section. An evaporative liquid is passed across the outside of the external passageways of the indirect heat exchange section to exchange heat indirectly with the internal fluid stream. The evaporative liquid that exits the indirect evaporative heat exchange section housing then passes onto and through the direct heat exchange section. The evaporative liquid exiting the direct heat exchange section is collected in a sump and then pumped upwardly to be distributed again through the indirect heat exchange section housing. The indirect heat exchange section may be comprised of a plate type heat exchanger or a circuit tube type heat exchanger located within a housing. The indirect heat exchange housing may be in direct contact with the air moving through the direct heat exchange section, be in direct contact with the cool evaporative liquid, or both, to enhance the heat transfer from the indirect heat exchange section. Air may be pumped along with the evaporative liquid through the indirect heat exchange section to agitate and increase the velocity of evaporative fluid flowing through the indirect heat exchanger. Air may also be pumped into and through the indirect eat exchange section housing when the evaporative fluid pump is off during a dry mode of operation.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3601920A4 |
source | esp@cenet |
subjects | BLASTING DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OFGENERAL APPLICATION HEAT EXCHANGE IN GENERAL HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION HEATING LIGHTING MECHANICAL ENGINEERING WEAPONS |
title | COOLING TOWER WITH DIRECT AND INDIRECT HEAT EXCHANGER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHIN,%20Yoon,%20K&rft.date=2020-12-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3601920A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |