METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM

Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kratzke, Lisa, Katzmann, Alexander, Mühlberg, Alexander, Sühling, Michael
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kratzke, Lisa
Katzmann, Alexander
Mühlberg, Alexander
Sühling, Michael
description Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3576020A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3576020A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3576020A13</originalsourceid><addsrcrecordid>eNqNjc9qAjEQxvfSg7R9h3kAC1qpnsdkTAJJZpnMHtaLiKSnooI-tg_hdi306mU-5sf3Z9LcEqlnW2DDAo4yCWrIDkqf1ZMGAyoY8i-yqAiY7Wj9p0QtREIZP4yOJahPj0Lt0nAjlcAZjEdBoyRhO2xwnsJje-wsfVFKz4QMp7YbALTCTjCNcYpkVDgHgzH2IIQW15GgKAs6GpZs6NJb8_K9_7nU9z99bWBDavxHPZ929XLeH-qxXnfULr5Wy9nnDOeLJyx3rSFZyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><source>esp@cenet</source><creator>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</creator><creatorcontrib>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</creatorcontrib><description>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191204&amp;DB=EPODOC&amp;CC=EP&amp;NR=3576020A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191204&amp;DB=EPODOC&amp;CC=EP&amp;NR=3576020A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kratzke, Lisa</creatorcontrib><creatorcontrib>Katzmann, Alexander</creatorcontrib><creatorcontrib>Mühlberg, Alexander</creatorcontrib><creatorcontrib>Sühling, Michael</creatorcontrib><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><description>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjc9qAjEQxvfSg7R9h3kAC1qpnsdkTAJJZpnMHtaLiKSnooI-tg_hdi306mU-5sf3Z9LcEqlnW2DDAo4yCWrIDkqf1ZMGAyoY8i-yqAiY7Wj9p0QtREIZP4yOJahPj0Lt0nAjlcAZjEdBoyRhO2xwnsJje-wsfVFKz4QMp7YbALTCTjCNcYpkVDgHgzH2IIQW15GgKAs6GpZs6NJb8_K9_7nU9z99bWBDavxHPZ929XLeH-qxXnfULr5Wy9nnDOeLJyx3rSFZyA</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Kratzke, Lisa</creator><creator>Katzmann, Alexander</creator><creator>Mühlberg, Alexander</creator><creator>Sühling, Michael</creator><scope>EVB</scope></search><sort><creationdate>20191204</creationdate><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><author>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3576020A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kratzke, Lisa</creatorcontrib><creatorcontrib>Katzmann, Alexander</creatorcontrib><creatorcontrib>Mühlberg, Alexander</creatorcontrib><creatorcontrib>Sühling, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kratzke, Lisa</au><au>Katzmann, Alexander</au><au>Mühlberg, Alexander</au><au>Sühling, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><date>2019-12-04</date><risdate>2019</risdate><abstract>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3576020A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kratzke,%20Lisa&rft.date=2019-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3576020A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true