METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM
Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- u...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kratzke, Lisa Katzmann, Alexander Mühlberg, Alexander Sühling, Michael |
description | Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3576020A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3576020A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3576020A13</originalsourceid><addsrcrecordid>eNqNjc9qAjEQxvfSg7R9h3kAC1qpnsdkTAJJZpnMHtaLiKSnooI-tg_hdi306mU-5sf3Z9LcEqlnW2DDAo4yCWrIDkqf1ZMGAyoY8i-yqAiY7Wj9p0QtREIZP4yOJahPj0Lt0nAjlcAZjEdBoyRhO2xwnsJje-wsfVFKz4QMp7YbALTCTjCNcYpkVDgHgzH2IIQW15GgKAs6GpZs6NJb8_K9_7nU9z99bWBDavxHPZ929XLeH-qxXnfULr5Wy9nnDOeLJyx3rSFZyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><source>esp@cenet</source><creator>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</creator><creatorcontrib>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</creatorcontrib><description>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191204&DB=EPODOC&CC=EP&NR=3576020A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191204&DB=EPODOC&CC=EP&NR=3576020A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kratzke, Lisa</creatorcontrib><creatorcontrib>Katzmann, Alexander</creatorcontrib><creatorcontrib>Mühlberg, Alexander</creatorcontrib><creatorcontrib>Sühling, Michael</creatorcontrib><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><description>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjc9qAjEQxvfSg7R9h3kAC1qpnsdkTAJJZpnMHtaLiKSnooI-tg_hdi306mU-5sf3Z9LcEqlnW2DDAo4yCWrIDkqf1ZMGAyoY8i-yqAiY7Wj9p0QtREIZP4yOJahPj0Lt0nAjlcAZjEdBoyRhO2xwnsJje-wsfVFKz4QMp7YbALTCTjCNcYpkVDgHgzH2IIQW15GgKAs6GpZs6NJb8_K9_7nU9z99bWBDavxHPZ929XLeH-qxXnfULr5Wy9nnDOeLJyx3rSFZyA</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Kratzke, Lisa</creator><creator>Katzmann, Alexander</creator><creator>Mühlberg, Alexander</creator><creator>Sühling, Michael</creator><scope>EVB</scope></search><sort><creationdate>20191204</creationdate><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><author>Kratzke, Lisa ; Katzmann, Alexander ; Mühlberg, Alexander ; Sühling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3576020A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kratzke, Lisa</creatorcontrib><creatorcontrib>Katzmann, Alexander</creatorcontrib><creatorcontrib>Mühlberg, Alexander</creatorcontrib><creatorcontrib>Sühling, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kratzke, Lisa</au><au>Katzmann, Alexander</au><au>Mühlberg, Alexander</au><au>Sühling, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM</title><date>2019-12-04</date><risdate>2019</risdate><abstract>Method for generating synthetic training data for training a deep learning algorithm (1), comprising the steps of:- training a Generative Adversarial Network (5) to generate synthetic image data (4), wherein the Generative Adversarial Network (5) comprises a generator (6) and a discriminator (7),- using the generator (6) of the Generative Adversarial Network (5) to generate synthetic image data (4) as the synthetic training data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3576020A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | METHODS FOR GENERATING SYNTHETIC TRAINING DATA AND FOR TRAINING DEEP LEARNING ALGORITHMS FOR TUMOR LESION CHARACTERIZATION, METHOD AND SYSTEM FOR TUMOR LESION CHARACTERIZATION, COMPUTER PROGRAM AND ELECTRONICALLY READABLE STORAGE MEDIUM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kratzke,%20Lisa&rft.date=2019-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3576020A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |