WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF

Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ILGAR, Ersan, PIASCIK, James
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ILGAR, Ersan
PIASCIK, James
description Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the component surface to yield a coated component, wherein P is phosphorus and X is cobalt, nickel, or a combination thereof. After formation of the XP alloy body, the XP alloy body is machined; and, following machining, the coated component is heat treated to precipitate harden the XP alloy body. In certain embodiments, heat treatment may be conducted to concurrently anneal the underlying component in conjunction with precipitation hardening of the XP alloy body. In other instances, the method further includes the step of forming a barrier layer over the component surface prior to deposition of the XP alloy body.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3546616B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3546616B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3546616B13</originalsourceid><addsrcrecordid>eNqNizEOgkAQRWksjHqHuQAFQekHdnA3gRmyO4mhIsSsFVESvH8E4wGs3vv5_--T6UbowVNwQZEVKkF1fA2rsKLj1aHzVLnO6doIpxa9ISYD2DTSQynGUQBkAy2pFROgFg9qaWP7_WzJk9THZPcYpyWefjwkUJNWNo3za4jLPN7jM74H6vLLuSiyoszyPyYft7Q2jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF</title><source>esp@cenet</source><creator>ILGAR, Ersan ; PIASCIK, James</creator><creatorcontrib>ILGAR, Ersan ; PIASCIK, James</creatorcontrib><description>Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the component surface to yield a coated component, wherein P is phosphorus and X is cobalt, nickel, or a combination thereof. After formation of the XP alloy body, the XP alloy body is machined; and, following machining, the coated component is heat treated to precipitate harden the XP alloy body. In certain embodiments, heat treatment may be conducted to concurrently anneal the underlying component in conjunction with precipitation hardening of the XP alloy body. In other instances, the method further includes the step of forming a barrier layer over the component surface prior to deposition of the XP alloy body.</description><language>eng ; fre ; ger</language><subject>APPARATUS THEREFOR ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTROFORMING ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=EP&amp;NR=3546616B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210519&amp;DB=EPODOC&amp;CC=EP&amp;NR=3546616B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ILGAR, Ersan</creatorcontrib><creatorcontrib>PIASCIK, James</creatorcontrib><title>WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF</title><description>Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the component surface to yield a coated component, wherein P is phosphorus and X is cobalt, nickel, or a combination thereof. After formation of the XP alloy body, the XP alloy body is machined; and, following machining, the coated component is heat treated to precipitate harden the XP alloy body. In certain embodiments, heat treatment may be conducted to concurrently anneal the underlying component in conjunction with precipitation hardening of the XP alloy body. In other instances, the method further includes the step of forming a barrier layer over the component surface prior to deposition of the XP alloy body.</description><subject>APPARATUS THEREFOR</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTROFORMING</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOgkAQRWksjHqHuQAFQekHdnA3gRmyO4mhIsSsFVESvH8E4wGs3vv5_--T6UbowVNwQZEVKkF1fA2rsKLj1aHzVLnO6doIpxa9ISYD2DTSQynGUQBkAy2pFROgFg9qaWP7_WzJk9THZPcYpyWefjwkUJNWNo3za4jLPN7jM74H6vLLuSiyoszyPyYft7Q2jg</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>ILGAR, Ersan</creator><creator>PIASCIK, James</creator><scope>EVB</scope></search><sort><creationdate>20210519</creationdate><title>WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF</title><author>ILGAR, Ersan ; PIASCIK, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3546616B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>APPARATUS THEREFOR</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTROFORMING</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>ILGAR, Ersan</creatorcontrib><creatorcontrib>PIASCIK, James</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ILGAR, Ersan</au><au>PIASCIK, James</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF</title><date>2021-05-19</date><risdate>2021</risdate><abstract>Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the component surface to yield a coated component, wherein P is phosphorus and X is cobalt, nickel, or a combination thereof. After formation of the XP alloy body, the XP alloy body is machined; and, following machining, the coated component is heat treated to precipitate harden the XP alloy body. In certain embodiments, heat treatment may be conducted to concurrently anneal the underlying component in conjunction with precipitation hardening of the XP alloy body. In other instances, the method further includes the step of forming a barrier layer over the component surface prior to deposition of the XP alloy body.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3546616B1
source esp@cenet
subjects APPARATUS THEREFOR
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTROFORMING
ELECTROLYTIC OR ELECTROPHORETIC PROCESSES
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title WEAR RESISTANT COATINGS CONTAINING PRECIPITATION-HARDENED ALLOY BODIES AND METHODS FOR THE FORMATION THEREOF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ILGAR,%20Ersan&rft.date=2021-05-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3546616B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true