METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT

Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GREGG, Jason Ray, DYSON, Thomas Earl, RATHAY, Nicholas William
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GREGG, Jason Ray
DYSON, Thomas Earl
RATHAY, Nicholas William
description Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3508691A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3508691A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3508691A33</originalsourceid><addsrcrecordid>eNrjZPDwdQ3x8HdR8HdTcPMP8vX0c1dw9vf3AdEBjsHBju6uIHGFkNAgJ08_V6Ccb4C_n6tfiEK4Z4iHgrNjgIKrj6svUICHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGliYWRo6GhsToQQAn1ssXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><source>esp@cenet</source><creator>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</creator><creatorcontrib>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</creatorcontrib><description>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</description><language>eng ; fre ; ger</language><subject>BLASTING ; ENGINE PLANTS IN GENERAL ; HEATING ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190717&amp;DB=EPODOC&amp;CC=EP&amp;NR=3508691A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190717&amp;DB=EPODOC&amp;CC=EP&amp;NR=3508691A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GREGG, Jason Ray</creatorcontrib><creatorcontrib>DYSON, Thomas Earl</creatorcontrib><creatorcontrib>RATHAY, Nicholas William</creatorcontrib><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><description>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</description><subject>BLASTING</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDwdQ3x8HdR8HdTcPMP8vX0c1dw9vf3AdEBjsHBju6uIHGFkNAgJ08_V6Ccb4C_n6tfiEK4Z4iHgrNjgIKrj6svUICHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGliYWRo6GhsToQQAn1ssXw</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>GREGG, Jason Ray</creator><creator>DYSON, Thomas Earl</creator><creator>RATHAY, Nicholas William</creator><scope>EVB</scope></search><sort><creationdate>20190717</creationdate><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><author>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3508691A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>BLASTING</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>GREGG, Jason Ray</creatorcontrib><creatorcontrib>DYSON, Thomas Earl</creatorcontrib><creatorcontrib>RATHAY, Nicholas William</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GREGG, Jason Ray</au><au>DYSON, Thomas Earl</au><au>RATHAY, Nicholas William</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><date>2019-07-17</date><risdate>2019</risdate><abstract>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3508691A3
source esp@cenet
subjects BLASTING
ENGINE PLANTS IN GENERAL
HEATING
LIGHTING
MACHINES OR ENGINES IN GENERAL
MECHANICAL ENGINEERING
NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES
STEAM ENGINES
WEAPONS
title METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GREGG,%20Jason%20Ray&rft.date=2019-07-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3508691A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true