METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT
Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GREGG, Jason Ray DYSON, Thomas Earl RATHAY, Nicholas William |
description | Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3508691A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3508691A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3508691A33</originalsourceid><addsrcrecordid>eNrjZPDwdQ3x8HdR8HdTcPMP8vX0c1dw9vf3AdEBjsHBju6uIHGFkNAgJ08_V6Ccb4C_n6tfiEK4Z4iHgrNjgIKrj6svUICHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGliYWRo6GhsToQQAn1ssXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><source>esp@cenet</source><creator>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</creator><creatorcontrib>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</creatorcontrib><description>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</description><language>eng ; fre ; ger</language><subject>BLASTING ; ENGINE PLANTS IN GENERAL ; HEATING ; LIGHTING ; MACHINES OR ENGINES IN GENERAL ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES ; STEAM ENGINES ; WEAPONS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190717&DB=EPODOC&CC=EP&NR=3508691A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190717&DB=EPODOC&CC=EP&NR=3508691A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GREGG, Jason Ray</creatorcontrib><creatorcontrib>DYSON, Thomas Earl</creatorcontrib><creatorcontrib>RATHAY, Nicholas William</creatorcontrib><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><description>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</description><subject>BLASTING</subject><subject>ENGINE PLANTS IN GENERAL</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MACHINES OR ENGINES IN GENERAL</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</subject><subject>STEAM ENGINES</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDwdQ3x8HdR8HdTcPMP8vX0c1dw9vf3AdEBjsHBju6uIHGFkNAgJ08_V6Ccb4C_n6tfiEK4Z4iHgrNjgIKrj6svUICHgTUtMac4lRdKczMouLmGOHvophbkx6cWFyQmp-allsS7BhibGliYWRo6GhsToQQAn1ssXw</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>GREGG, Jason Ray</creator><creator>DYSON, Thomas Earl</creator><creator>RATHAY, Nicholas William</creator><scope>EVB</scope></search><sort><creationdate>20190717</creationdate><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><author>GREGG, Jason Ray ; DYSON, Thomas Earl ; RATHAY, Nicholas William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3508691A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>BLASTING</topic><topic>ENGINE PLANTS IN GENERAL</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MACHINES OR ENGINES IN GENERAL</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES</topic><topic>STEAM ENGINES</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>GREGG, Jason Ray</creatorcontrib><creatorcontrib>DYSON, Thomas Earl</creatorcontrib><creatorcontrib>RATHAY, Nicholas William</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GREGG, Jason Ray</au><au>DYSON, Thomas Earl</au><au>RATHAY, Nicholas William</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT</title><date>2019-07-17</date><risdate>2019</risdate><abstract>Methods of forming a cooling passage on a turbine component 200 having a component wall with an internal surface 212 and an external surface 214, are disclosed. An opening 220 is formed passing through the component wall and fluidly connecting the internal and external surfaces. The opening includes a metering section 222 extending from the internal surface to a metering end, and a diffuser area 226 extending from the metering end to the external surface. A preformed cap element is added to close a portion of the diffuser area to form the cooling passage with a diffusion section 242 extending from the metering end to the external surface. The preformed metal cap element includes a projection 244 extending internally of the external surface and into the diffusion area to define an internally facing section of the diffusion section. The cooling passage extends through the component wall and fluidly connects the internal surface and the external surface.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3508691A3 |
source | esp@cenet |
subjects | BLASTING ENGINE PLANTS IN GENERAL HEATING LIGHTING MACHINES OR ENGINES IN GENERAL MECHANICAL ENGINEERING NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAMTURBINES STEAM ENGINES WEAPONS |
title | METHOD OF FORMING COOLING PASSAGE FOR TURBINE COMPONENT WITH CAP ELEMENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GREGG,%20Jason%20Ray&rft.date=2019-07-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3508691A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |