A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS

The invention relates to a method for unsupervised learning of a multilevel hierarchical network of artificial neurons wherein each neuron is interconnected by means of artificial synapses to neurons of a lower hierarchical level and to neurons of an upper hierarchical level. The method comprises at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BICHLER, Olivier, THIELE, Johannes Christian
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BICHLER, Olivier
THIELE, Johannes Christian
description The invention relates to a method for unsupervised learning of a multilevel hierarchical network of artificial neurons wherein each neuron is interconnected by means of artificial synapses to neurons of a lower hierarchical level and to neurons of an upper hierarchical level. The method comprises at a neuron the steps of:- integrating inference spikes from the interconnected neurons of the lower hierarchical level both in a first and a second accumulators (A1, A2) using the same synaptic weights;- when the first accumulator reaches a first threshold, generating a learning spike, resetting the first accumulator, triggering synaptic conductance modification in accordance with a spike-timing dependent plasticity rule and delivering the learning spike as an inhibitory signal to other neurons in the same hierarchical level;- when the second accumulator reaches a second threshold, generating an inference spike, delivering the generated inference spike to the interconnected neurons of the upper hierarchical level, resetting the second accumulator and possibly delivering the inference spike as an inhibitory signal to other neurons in the same hierarchical level.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3489865B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3489865B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3489865B13</originalsourceid><addsrcrecordid>eNrjZPByVAgOcQnQdXIMdnVR8HF1DPLz9HNX8HUN8fB3UXDzD1JwVPBzDQn3D_JW8HAMA8m5hDr6KDg6O4f6hvo4hgBV-LmGBvn7BfMwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXAGMTC0sLM1MnQ2MilAAA4KYs6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS</title><source>esp@cenet</source><creator>BICHLER, Olivier ; THIELE, Johannes Christian</creator><creatorcontrib>BICHLER, Olivier ; THIELE, Johannes Christian</creatorcontrib><description>The invention relates to a method for unsupervised learning of a multilevel hierarchical network of artificial neurons wherein each neuron is interconnected by means of artificial synapses to neurons of a lower hierarchical level and to neurons of an upper hierarchical level. The method comprises at a neuron the steps of:- integrating inference spikes from the interconnected neurons of the lower hierarchical level both in a first and a second accumulators (A1, A2) using the same synaptic weights;- when the first accumulator reaches a first threshold, generating a learning spike, resetting the first accumulator, triggering synaptic conductance modification in accordance with a spike-timing dependent plasticity rule and delivering the learning spike as an inhibitory signal to other neurons in the same hierarchical level;- when the second accumulator reaches a second threshold, generating an inference spike, delivering the generated inference spike to the interconnected neurons of the upper hierarchical level, resetting the second accumulator and possibly delivering the inference spike as an inhibitory signal to other neurons in the same hierarchical level.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210106&amp;DB=EPODOC&amp;CC=EP&amp;NR=3489865B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210106&amp;DB=EPODOC&amp;CC=EP&amp;NR=3489865B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BICHLER, Olivier</creatorcontrib><creatorcontrib>THIELE, Johannes Christian</creatorcontrib><title>A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS</title><description>The invention relates to a method for unsupervised learning of a multilevel hierarchical network of artificial neurons wherein each neuron is interconnected by means of artificial synapses to neurons of a lower hierarchical level and to neurons of an upper hierarchical level. The method comprises at a neuron the steps of:- integrating inference spikes from the interconnected neurons of the lower hierarchical level both in a first and a second accumulators (A1, A2) using the same synaptic weights;- when the first accumulator reaches a first threshold, generating a learning spike, resetting the first accumulator, triggering synaptic conductance modification in accordance with a spike-timing dependent plasticity rule and delivering the learning spike as an inhibitory signal to other neurons in the same hierarchical level;- when the second accumulator reaches a second threshold, generating an inference spike, delivering the generated inference spike to the interconnected neurons of the upper hierarchical level, resetting the second accumulator and possibly delivering the inference spike as an inhibitory signal to other neurons in the same hierarchical level.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPByVAgOcQnQdXIMdnVR8HF1DPLz9HNX8HUN8fB3UXDzD1JwVPBzDQn3D_JW8HAMA8m5hDr6KDg6O4f6hvo4hgBV-LmGBvn7BfMwsKYl5hSn8kJpbgYFN9cQZw_d1IL8-NTigsTk1LzUknjXAGMTC0sLM1MnQ2MilAAA4KYs6Q</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>BICHLER, Olivier</creator><creator>THIELE, Johannes Christian</creator><scope>EVB</scope></search><sort><creationdate>20210106</creationdate><title>A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS</title><author>BICHLER, Olivier ; THIELE, Johannes Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3489865B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BICHLER, Olivier</creatorcontrib><creatorcontrib>THIELE, Johannes Christian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BICHLER, Olivier</au><au>THIELE, Johannes Christian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS</title><date>2021-01-06</date><risdate>2021</risdate><abstract>The invention relates to a method for unsupervised learning of a multilevel hierarchical network of artificial neurons wherein each neuron is interconnected by means of artificial synapses to neurons of a lower hierarchical level and to neurons of an upper hierarchical level. The method comprises at a neuron the steps of:- integrating inference spikes from the interconnected neurons of the lower hierarchical level both in a first and a second accumulators (A1, A2) using the same synaptic weights;- when the first accumulator reaches a first threshold, generating a learning spike, resetting the first accumulator, triggering synaptic conductance modification in accordance with a spike-timing dependent plasticity rule and delivering the learning spike as an inhibitory signal to other neurons in the same hierarchical level;- when the second accumulator reaches a second threshold, generating an inference spike, delivering the generated inference spike to the interconnected neurons of the upper hierarchical level, resetting the second accumulator and possibly delivering the inference spike as an inhibitory signal to other neurons in the same hierarchical level.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3489865B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title A STDP-BASED LEARNING METHOD FOR A NETWORK HAVING DUAL ACCUMULATOR NEURONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BICHLER,%20Olivier&rft.date=2021-01-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3489865B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true