LARGE SCALE SOCIAL GRAPH SEGMENTATION

A method of complementary clustering of a vast population of objects is disclosed. The method aims at maximizing a global measure of object affinity within naturally-formed clusters. A first clustering procedure produces primary centroids of clusters of objects and a second clustering procedure prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HANKINSON, Stephen James Frederic, BURKE, Timothy Andrew
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HANKINSON, Stephen James Frederic
BURKE, Timothy Andrew
description A method of complementary clustering of a vast population of objects is disclosed. The method aims at maximizing a global measure of object affinity within naturally-formed clusters. A first clustering procedure produces primary centroids of clusters of objects and a second clustering procedure produces secondary clusters of the primary centroids and corresponding secondary centroids. Refined clusters of the population of objects are formed based on object proximity to the secondary centroids. The first clustering procedure is preferably based on a variation of the K-means method, and the second clustering procedure is preferably based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). An apparatus implementing the method is devised to facilitate conflict-free parallel processing.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3452916A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3452916A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3452916A13</originalsourceid><addsrcrecordid>eNrjZFD1cQxyd1UIdnb0AZL-zp6OPgruQY4BHgrBru6-rn4hjiGe_n48DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDYxNTI0tDM0dCYCCUASLEivg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LARGE SCALE SOCIAL GRAPH SEGMENTATION</title><source>esp@cenet</source><creator>HANKINSON, Stephen James Frederic ; BURKE, Timothy Andrew</creator><creatorcontrib>HANKINSON, Stephen James Frederic ; BURKE, Timothy Andrew</creatorcontrib><description>A method of complementary clustering of a vast population of objects is disclosed. The method aims at maximizing a global measure of object affinity within naturally-formed clusters. A first clustering procedure produces primary centroids of clusters of objects and a second clustering procedure produces secondary clusters of the primary centroids and corresponding secondary centroids. Refined clusters of the population of objects are formed based on object proximity to the secondary centroids. The first clustering procedure is preferably based on a variation of the K-means method, and the second clustering procedure is preferably based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). An apparatus implementing the method is devised to facilitate conflict-free parallel processing.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190313&amp;DB=EPODOC&amp;CC=EP&amp;NR=3452916A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190313&amp;DB=EPODOC&amp;CC=EP&amp;NR=3452916A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HANKINSON, Stephen James Frederic</creatorcontrib><creatorcontrib>BURKE, Timothy Andrew</creatorcontrib><title>LARGE SCALE SOCIAL GRAPH SEGMENTATION</title><description>A method of complementary clustering of a vast population of objects is disclosed. The method aims at maximizing a global measure of object affinity within naturally-formed clusters. A first clustering procedure produces primary centroids of clusters of objects and a second clustering procedure produces secondary clusters of the primary centroids and corresponding secondary centroids. Refined clusters of the population of objects are formed based on object proximity to the secondary centroids. The first clustering procedure is preferably based on a variation of the K-means method, and the second clustering procedure is preferably based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). An apparatus implementing the method is devised to facilitate conflict-free parallel processing.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD1cQxyd1UIdnb0AZL-zp6OPgruQY4BHgrBru6-rn4hjiGe_n48DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDYxNTI0tDM0dCYCCUASLEivg</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>HANKINSON, Stephen James Frederic</creator><creator>BURKE, Timothy Andrew</creator><scope>EVB</scope></search><sort><creationdate>20190313</creationdate><title>LARGE SCALE SOCIAL GRAPH SEGMENTATION</title><author>HANKINSON, Stephen James Frederic ; BURKE, Timothy Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3452916A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HANKINSON, Stephen James Frederic</creatorcontrib><creatorcontrib>BURKE, Timothy Andrew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HANKINSON, Stephen James Frederic</au><au>BURKE, Timothy Andrew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LARGE SCALE SOCIAL GRAPH SEGMENTATION</title><date>2019-03-13</date><risdate>2019</risdate><abstract>A method of complementary clustering of a vast population of objects is disclosed. The method aims at maximizing a global measure of object affinity within naturally-formed clusters. A first clustering procedure produces primary centroids of clusters of objects and a second clustering procedure produces secondary clusters of the primary centroids and corresponding secondary centroids. Refined clusters of the population of objects are formed based on object proximity to the secondary centroids. The first clustering procedure is preferably based on a variation of the K-means method, and the second clustering procedure is preferably based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). An apparatus implementing the method is devised to facilitate conflict-free parallel processing.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3452916A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title LARGE SCALE SOCIAL GRAPH SEGMENTATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HANKINSON,%20Stephen%20James%20Frederic&rft.date=2019-03-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3452916A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true